
Logitech HID++2.0 Draft Specification
04 June, 2012

Contents
Disclaimer .......................................................................................................................................................................... 1

Introduction........................................................................................................................................................................ 1

Protocol Versioning .......................................................................................................................................................... 1

Ping same as Protocol versioning ................................................................................................................................. 2

Protocol HID++2.0 essential features ........................................................................................................................... 2

0x0000 IRoot: the entry point feature............................................................................................................................ 3

0x0001 IFeatureSet: Get list of device Features ......................................................................................................... 4

0x0003 LONG Get FW version, build + protocol_specific_info................................................................................. 7

0x0005 Device Name and Type..................................................................................................................................... 8

0x1000 Battery Unified Level Status ............................................................................................................................. 9

0x1B00 KBD reprogrammable Keys and MSE buttons (Rev1)............................................................................... 10

0x1D4B Wireless Device Status .................................................................................................................................. 14

HID++2.0 Device transaction example ........................................................................................................................... 14

Disclaimer
THIS SPECIFICATION IS LICENSED AND PROVIDED BY LOGITECH "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND

FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LOGITECH OR ANY OF ITS

AFFILIATED COMPANIES BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SPECIFICATION, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

Introduction
Logitech’s HID++2.0 is the protocol over HID used to access most of Logitech HID devices.

This document describes the basics of HID ++ 2.0 protocol, including versioning, the structure of functions and the

following features: entry point, retrieving firmware information such as version and build numbers and device name and

type (such as keyboard, mouse, etc.). An example device transaction concludes this document.

Protocol Versioning
HID++ protocol should have a versioning support to allow forward compatibility and versioning API should be obviously
independent of the various protocols.
Since version 1.0 of the protocol does not have explicit versioning support, we need a way to discriminate version 1.0 from 2.0 and
further.



Version 1.0 of the protocol does not implement RegisterAccessID 0x00. Sending a request with this value generates an error
message, One solution is to use this particularity to implement a GetProtocolVersion function.

version = GetProtocolVersion()

Request: 0x10.DeviceIndex.0x00.0x1n.0x00.0x00.0xUU
n in 0x1n is SwID
0xUU is "ping data" defined by SW

Response:
HID++ 1.0: 0x10.DeviceIndex.0x8F.0x00.0xFn.0x01.0x00 (ERR_INVALID_SUBID response)
HID++ 2.0: 0x10.DeviceIndex.0x00.0x1n,0x02.0x00.0xUU
HID++ XX.YY: 0x10.DeviceIndex.0x00.0x1n,0xXX.0xYY.0xUU

Ping same as Protocol versioning

response = Ping(0xXX)

Request: 0x10.DeviceIndex.0x00.0x1n.0x00.0x00.0xUU
Response:

HID++ 2.0: 0x10.DeviceIndex.0x00.0x1n,0x02.0x00.0xUU

This makes the ping request appear as a hidden 0xE function of the IRoot feature so that firmware and software can use the normal
feature/function dispatch mechanism to handle it.
to simplify implementation in both FW and SW is to make the ping request "look" like a normal feature request by putting the SwId in its
normal place. The "n" in 0xEn below would be the SwId. The change in the high nibble from F to E is to avoid conflict with the
GetProtocolVersion request.

Protocol HID++2.0 essential features

Functions

A function is composed of a request sent by the host PC followed by one or more responses returned by the HID++ 2.0 device/receiver.
Within a given feature, each function is defined by a function identifier (assigned from a pool of 16 identifiers shared with ASEs, see
below). Requests can have up to 3 or 16 bytes of parameters, while responses return the same quantity of results. Most functions will
be read or write functions (although functions which do both or neither are also allowed).

Unless otherwise specified, the protocol is big-endian, meaning that a 16bits value sent on bytes 4 and 5, will have its MSB in byte 4
and its LSB in byte 5.

Requests

0 1 2 3 4 5 6

0x10
Dev. index
[1 .. 255]

Feature index
[1 .. 254]

Fctn/ASE
id. [0 .. 15]

Sw. id.
[1 .. 15]

Parameters

0 1 2 3 4 5 6 ... 19

0x11
Dev. index
[1 .. 255]

Feature index
[1 .. 254]

Fctn/ASE
id. [0 ..

15]

Sw. id.
[1 .. 15]

Parameters

Responses

0 1 2 3 4 5 6 ... 19

0x11
Dev. index
[1 .. 255]

Feature index
[1 .. 254]

Fctn/ASE
id. [0 ..

15]

Sw. id.
[1 .. 15]

Results



0 1 2 3 4 5 6 ... 19

0x11
Dev. index
[1 .. 255]

Feature index
[1 .. 254]

Fctn/ASE
id. [0 ..

15]

Sw. id.
[1 .. 15]

Results

The device index, feature index, function identifier, and software identifier are always returned unchanged.

All functions must respect the following rule:
All parameters in a request must always be repeated in the response:

Any parameter that is fully supported must be repeated "as is".
Any parameter that is only "partially supported", must be returned as supported.

The following examples should help to better understand these requirement:
A read command where an address (i.e., memory address, register address, etc.) is given as parameter must return the address

and the data in the response (and not just the address).
A write command which sets a collection of bits or bit fields, should return the same value where all unsupported bits and bit fields

have been masked to their default values (usually 0).
A command such as open-lock, erase-memory, etc. should return its parameters unchanged.

Note that there is no requirement to implement partial support. Each feature designer is free to decide if "partially correct" parameters
should return and error or be "partially supported." However, if partial support is implemented, then the parameters must be returned
as supported.

Application-specific events (ASEs)
An application-specific event (ASE) is a notification sent by an HID++ 2.0 device/receiver, which is linked to a previously-
received function and primarily destined to the software that sent this command. In this case, the software identifier
associated with the function is repeated in the ASE. Within a given feature, each ASE is defined by an ASE identifier
(assigned from a pool of 16 identifiers shared with functions, see above). ASEs have up to 3 or 16 bytes of data.

Broadcast events
A broadcast event is an notification sent by an HID++ 2.0 device/receiver, which is not destined to any particular software
(note that it might or might not be linked to a previously-received function). Within a given feature, each broadcast event
is defined by an broadcast event identifier. Broadcast events have up to 3 or 16 bytes of data.

Software identifier (4 bits, unsigned)
A number uniquely defining the software that sends a request. The firmware must copy the software identifier in the
response but does not use it in any other ways.

0 Do not use (allows to distinguish a notification from a response).

HID++2.0 error codes
Error Value Comment
NoError 0 Not an error
Unknown 1
InvalidArgument 2
OutOfRange 3
HWError 4
Logitech internal 5
INVALID_FEATURE_INDEX 6
INVALID_FUNCTION_ID 7
Busy 8 Device (or receiver) cannot answer

immediately to this request for any
reason i.e:
already processing a request from the

same or another SW
pipe full
...

Unsupported 9

0x0000 IRoot: the entry point feature



[0x0000]IRoot
featureIndex, featureType = [0]GetFeature(featureID)
ping = [1]GetFeature(pingData) /* this function is not part of the protocol itself as it is a dual
HID++1.0 / HID++2.0 message (the version of the protocol can't be inside a version of the protocol )*/

IRoot
The entry point feature which is always at index 0.

GetFeature
Summary

Given a desired feature ID, returns its index (reference) in the feature table.
Parameters

featureID [16bits] The ID of the desired feature. The ID 0 is forbidden (root feature ID)
Returns

featureIndex [8bits] The one based feature index in the feature table, 0 if not found
featureType [2bits] This value is also provided in IFeatureSet.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0

1: obsolete
feature
0: active
feature

1: SW hidden
feature
0: SW
supported
feature

Reserved for
Logitech
internal use

n/a n/a n/a n/a n/a

Errors
No specific error

Remarks
The feature table is one based. Index 0 is forbidden (root index or not found value)
An obsolete feature is a feature that has been replaced by a newer one, but is advertized in order for older SWs to still

be able to support the feature (in case the old SW does not know yet the newer one).
A SW hidden feature is a feature that should not be known/managed/used by standard user SW

Request

0 1 2
featureID:MSB featureID:LSB N/A

Response

0 1 2
featureIndex featureType N/A

SW Response Error Exception
none.

SW Description:

The Root feature is used by the software to determine if an unknown device is HID++ 1.0 or 2.0. The GetProtocolVersion is a feature of
the RootFeature.
Once HID++ 2.0 is confirmed there are 2 main types of software implementations which will use the Root feature to interface with a
device :

0x0001 IFeatureSet: Get list of device Features



[0x0001]IFeatureSet
count = [0]GetCount()
featureID, featureType = [1]GetFeatureID(featureIndex)

IFeatureSet
The feature set feature which enumerates features.

GetCount
Summary

Returns the number of features contained in the set, not including the root feature.
Parameters

None
Returns

count [8bits] The number of features in the set, not including the root feature.

Errors
No specific error

GetFeatureID
Summary

Given a feature index returns its ID
Parameters

featureIndex [8bits] The one based feature index in the feature table.

Returns

featureID [16bits] The ID of the feature
featureType [2bits] This value is also provided in IRoot.

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 7 bit 0

1: obsolete
feature
0: active
feature

1: SW hidden
feature
0: SW
supported
feature

Reserved for
Logitech
internal use

n/a n/a n/a n/a n/a

Errors
OutOfRange [8bits] If index > Count

Remarks
An obsolete feature is a feature that has been replaced by a newer one, but is advertized in order for older SWs to still

be able to support the feature (in case the old SW does not know yet the newer one).
A SW hidden feature is a feature that should not be known/managed/used by standard user

Request

0 1 2
featureIndex N/A

Response

0 1 2
featureID:MSB featureID:LSB featureType

Example

IFeatureSet featureSet = Root.GetFeature(ID=1)
for (featureIndex = 1; featureIndex <= featureSet.GetCount(); ++featureIndex)

(featureID, featureType) = featureSet.GetFeatureID(featureIndex)
if (featureType == FeatureType.Ignore) continue
yield return FeatureFactory.Create(featureID, ...)

SW Description:

This feature is used to enumerate the features on a device.

- Features which are flagged with the "SW hidden" features are completely ignored (skipped) unless a an override for a specific feature
ID (and possible device model) becomes necessary.



Typical implementation will first query the # of features and then call GetFeatureID for each index from 1 to Count. Software will store
this information in a file (cache) and will only repeat this when the cache is no longer in synch with the device (e.g. if the device
firmware version has changed since the creation of the current cache).



0x0003 LONG Get FW version, build + protocol_specific_info
[0x0003]IFirmwareInfo

entityCount = [0]GetEntityCount()
entity, protocol, version, build, dynamic_FWconf, transportLayer_specific_info = [1]GetFwInfo(entity)

IFirmwareInfo
The firmware info feature
The firmware entities represent different codes running on the same processor (main firmware and bootloader, etc.) or on
different processors.
Shall also be used by SW with FwType=0 for CacheID as information in this function represents a unique ID for a given
device/build/etc...

GetEntityCount
Summary

Returns the number of firmware and hardware entities
Parameters

None
Returns

entityCount [8bits] The number of firmware entities
Errors

None
Remarks

Response
0 1 2

entityCount N/A

GetFwInfo
Summary

Returns the firmware version. Shall also be used by SW with FwType=0 for CacheID as information in this function
represents a unique ID for a given device/build/etc...

Parameters
FwHWEntity [8bits] The firmware or hardware entity for which we want the version

Returns
FwType [4bits] The FW type parameter

enum FirmwareType:
Main application = 0 (the one that talks thru HIDpp2.0)
BootLoader = 1
Hardware = 2 (used to know HW version)
Other = 3..15

FwPrefix [24bits] The ASCII prefix of the firmware entity
FwVersion [16bits] The BCD version number of the firmware entity
FwBuild [16bits] The build number of the firmware entity
XX [8bits]
transportLayer_Specific_info [up to 9 bytes] Transport layer (USB, Unifying) specific info (such as UnifyingID/PID for
instance)

Errors
OutOfRange [8bits] If index > entityCount

Remarks
Result in BCD (by analogy with the USB "bcdDevice" and for consistency with HID++ 1.0) [TBD]

Request
0 1 2

FwHwEntity N/A

Response FwType = BootLoader, Main application
0 1 2 3 4 5 6 7 8 9 ... 15

N/
A

FwTyp
e

FwPrefix
:

char1

FwPrefix
:

char2

FwPrefix
:

char3

FwVersion:MS
B

FwVersion:LS
B

FwBuild
:

MSB

FwBuild
:

LSB

X
X

transportLayer_Specific_inf
o



Response FwType = Hardware
0 1 2 3 4 5 6 7 8 ... 15

N/A 2
HW

Version
N/A N/A N/A N/A N/A N/A N/A

0x0005 Device Name and Type

[0x0005]GetDeviceNameType
nameLength = [0]GetCount()
DeviceName = [1]GetDeviceName(CharIndex)
DeviceType, deviceInterface(s) = [2]GetDeviceType()

GetDeviceNameType
get device name and type. name is also done at Unifying level.

GetCount
Summary

Returns the length of the device name that should appear in the SW. Note this does not include any termination zeros.
Parameters

None
Returns

count [8bits] The length of the device name that should appear in the SW.
Errors
No specific error

GetDeviceName
Summary

Returns a chunk of characters of the name starting from the index specified in the requested.
The size of the chunk is the entire payload of the transport packet used by the device to respond (HPPLong : 16
characters, HPPShort : 3 characters)

Parameters

CharIndex [8bits]
Returns

DeviceName Device name chunk starting at charindex.
Errors

OutOfRange (if Char Index > device name length)
Remarks
To query the device name the host first queries the length (GetCount)

SW Response Error Exception
none.

GetDeviceType
Summary

Returns device type
Parameters

None
Returns

type enum:
Keyboard = 0
RemoteControl =1
NUMPAD = 2
Mouse = 3
Touchpad = 4
Trackball = 5
Presenter = 6
Receiver = 7



Errors
None

0x1000 Battery Unified Level Status

[0x1000]BatteryLevelStatus

BatteryLevel = [0]GetBatteryLevelStatus()
LevelList[] = [1]GetBatteryCapability()

Event

BatteryLevel = [0]BatteryLevelStatusBroadcastEvent()

GetBatteryLevelStatus
Returns battery status to SW

BatteryLevelStatusBroadcastEvent
Reports battery status to SW spontaneously

Report
BatteryDischargeLevel [8bits] The current level expressed in %. 0 means unknown.
BatteryDischargeNextLevel [8bits] The next level to be reported in % as the device battery discharges. If the
current level is the lowest level or if the device is charging this value is set to 0.
BatteryStatus [8bits] Enum :

0 = discharging (in use)
1 = recharging
2 = charge in final stage
3 = charge complete
4 = recharging below optimal speed
5 = invalid battery type
6 = thermal error
7 = other charging error
8..255 : invalid

Remarks

Report
byte 0 byte 1 byte 2 byte 3..15

BatteryDischargeLevel BatteryDischargeNextLevel BatteryStatus n/a

SW Response Error Exception
next level > current level

Current level in [0..100] range
BatteryStatus in [0..6] range

GetBatteryCapability
Summary

Returns the static capability information about the device.
Parameters

None
Returns

NumberOfLevels [8bits] The number of levels the device is capable of reporting to the SW. Min : 2 - Max :
100.

If number of levels < 10 or if mileage is disabled then report are mapped to 4 levels this
way.
0%->10% critical
11%->30% low



31%->80% good
81%->100% full
i.e. to report battery low, FW send 25%, to report battery good, FW send 50%.

Flags [8bits]
bit 0 : Disable battery OSD
bit 1 : Enable mileage calculation. This flag is ignored by the SW if NumberOfLevels is

less than 10.
bit 2 : Rechargeable
bit 3 - 7 : must be set to zero.

NominalBatteryLife [16bits] Defined as Duration Type . As of today, this is only used when battery
mileage is enabled.

This could be the advertized battery life.
BatteryCriticalLevel [8bits] in % only used when battery mileage is enabled.

Battery Levels Value
InvalidBatteryLevel
not-Rechargeable

0x00

BatteryLow 0x18
BatteryGood 0x38
BatteryFull 0x58
BatteryError 0x68
BatteryLevelUnknown 0x69
WrongBatteryType 0x6B
BatteryNotCharging 0x6C
BatteryChargingUnknown 0x6D
BatteryCharging 0x6E
BatteryChargingSlow 0x6F
BatteryChargingFast 0x70
BatteryChargingComplete 0x71
BatteryChargingError 0x72

0x1B00 KBD reprogrammable Keys and MSE buttons (Rev1)

[0x1B00]SpecialKeysMSEButtons
ctrlIDCount = [0]GetCount()
ctrlIDIndex+flags list = [1]GetCtrlIDInfo(ctrlIDIndex)

Event

ctrlIDIndexPressedList = [0]ControlIDBroadcastEvent()



SpecialKeysMSEButtons
manages all SpecialKeys listed here:

Control ID table
Control Task Assignments
This feature is the engine enabling to manage of all FnKeys, HotKeys & MSE buttons.

GetCount
Summary

Returns the number of Keys and/or MSE Buttons defined.
Parameters

None
Returns

count [8bits] The number of Control IDs in the list.
Errors

No specific error

GetCtrlIDInfo
Summary

Returns a ctrl_ID and ctrl_Task indexes pointing towards tables defined below.
Concretely, let's assume a device with 7 controls which I will call A,B,C,D,E,F,G :
- GetCtrlIDInfo( 0 ) returns A
- GetCtrlIDInfo( 3 ) returns D
- GetCtrlIDInfo( 6 ) returns G

Parameters

ctrlIDIndex[8bits]
Returns

ctrl_ID_Index [16bits] ctrl_ID_Indexes

ctrl_Task_Index [16bits] ctrl_Task_Indexes

flags [8bits] field

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0
Reprogramma
ble:
0: NO
1: YES

Affected by
FnToggle:
0: NO
1: YES

Hotkey
not a Standard
key on KBDs.
Standard keys
have a "code"
from 1 to 126.

FnKey
(F1 to F12 or
F16)

MSE
Button*(1)

*(1): Use this bit for any function trigged by a mouse button, so it will appear in the mouse TAB of SetPoint. This
includes volume +/-, Search, etc...

For bits 3 to 0 only the following values are valid : 0001 (Mouse button), 0010 (Fn Key), 0100 (Hot key), 1010 (Fn
Key invertible).
Note : A control ID wich would have the re-programmable bit to NO and the task ID "generic control" 72 () would
be equivalent to not report this control ID in the list.

Errors
OutOfRange (if CtrlID Index > keymsebuttoncount)

Request

byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 byte
15

Control
ID index N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A



Response

byte 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 byte
15

Sent/FW
Control_I
D MSB

Sent/FW
Control_
ID LSB

Desired/
SW

Control_
Task
MSB

Desired/
SW

Control_
Task
LSB

Flags N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

SW Response Error Exception
none

ControlIDBroadcastEvent

Summary
This event is used to only report the following specific control IDs for which the native report is not sufficient or
does not exist :

Control ID's which do not have a make/break type of HID report (LC type. See : ). Note that in this case the
device must report both the linear control HID usage and this notification.

Control ID's mapped to generic HID buttons (Usage Page 0x09) except if they are generic mouse buttons or if
the device does not have any HID++ interface.

e.g. :
If Gadgets (d33) is used on a Unifying device or a corded device which has HID++ collections it should report
0x0021 (d33) in the ControlIDBroadcastEvent notification.
If Gadgets (d33) is used on a USB corded keyboard which does NOT have any HID++ collection (standard
PID) then it should report this key as generic button 0x019F

All other control IDs should NOT use this notification and always be reported in their respective HID interface as
defined in the control ID specification table.

Event data
The report contains an array of the applicable (see above) control IDs of the currently pressed controls
(keys/buttons). Each control ID is encoded on 2 bytes in big endian (MSB first).
When a control is released a report where this control ID is no longer present. Inactive value is 0x0000.
A maximum of 4 special control IDs can be pressed simultaneously.
All bytes outside of the array should be ignored.

The example below shows a sequence of reports with 2 control IDs pressed and released :

Control 1 ID pressed (make)

byte 0 1 2 3 4 5 6 7 bytes
8..15

Control 1 ID MSB
Control 1 ID

LSB
0 0 0 0 0 0 n/a

Control 2 ID pressed (make) and Control 1 ID still pressed.

byte 0 1 2 3 4 5 6 7 bytes
8..15

Control 1 ID MSB
Control 1 ID

LSB
Control 2 ID

MSB
Control 2 ID

LSB
0 0 0 0 n/a

Control 1 ID released (break) and Control 2 ID still pressed.

byte 0 1 2 3 4 5 6 7 bytes
8..15

Control 2 ID MSB
Control 2 ID

LSB
0 0 0 0 0 0 n/a



Control ID 2 released (break)

byte 0 1 2 3 4 5 6 7 bytes
8..15

0 0 0 0 0 0 0 0
n/a

Control
ID

Description HID
Suggested Task ID

1 / 0x1 Volume Up (Consumer Control)
Usage : 0x0C / Usage : 0x00E9
(Volume Increment)

1
Volume Up

2 / 0x2 Volume Down (Consumer Control)
Usage : 0x0C / Usage : 0x00EA
(Volume Decrement)

2
Volume Down

3 / 0x3 Mute (Consumer Control)
Usage : 0x0C / Usage : 0x00E2
(Mute)

3
Mute

4 / 0x4 Play/Pause (Consumer Control)
Usage : 0x0C / Usage : 0x00CD
(Play/Pause)

4
Play/Pause

5 / 0x5 Next (Consumer Control)
Usage : 0x0C / Usage : 0x00B5
(Scan Next Track)

5, Next with fast forward on long
press
/96 Next

6 / 0x6 Previous (Consumer Control)
Usage : 0x0C / Usage : 0x00B6
(Scan Previous Track)

6
Previous with rewind on long
press
/97 Previous

7 / 0x7 Stop (Consumer Control)
Usage : 0x0C / Usage : 0x00B7
(Stop)

7
Stop



Task ID
(dec)

Task Name Description

1 Volume Up Volume + (Increases volume on all connected playback devices)

2 Volume Down Volume - (Decreases volume on all connected playback devices)

3 Mute Toggle b/w Volume Mute and UnMute state (Displays OSD)

4 Play/Pause Toggles between play and pause state in SetPoint supported
players. ("Reads Players.ini which contains the commands to be
sent
to each player ( Standard APP Command , Keyboard shortcut, or
Button events.")

5 Next /Fast forward Next track and fast forward on long press (see task 96)

6 Previous /rewind PreviousTrack and rewind on long press (see task 97)

7 Stop Puts the player in STOP state. (Reads Players.ini which contains
the commands to be sent
to each player ( Standard APP Command , Keyboard shortcut, or
Button events.)

8 Application Switcher Activates the application switcher.

0x1D4B Wireless Device Status

[0x1D4B]WirelessDeviceStatus

Event

Status, Request, Reason = [0]WirelessDeviceStatusBroadcastEvent()

WirelessDeviceStatusBroadcastEvent
Sent by the device after a power-on reset

Report
Status [8bits] 0x00 no status

0x01 reconnection
0x02..0xFF reserved

Request [8bits] 0x00 no request
0x01 software reconfiguration needed
0x02..0xFF reserved

Reason [8bits] 0x00 unknown
0x01 power-switch activated
0x02..0xFF reserved

Remarks
This notification is always enabled since it must be sent by a device after a power-on reset.

Report
0 1 2

Status Request Reason

SW Response Error Exception
none.

HID++2.0 Device transaction example



utils 95
31
16:27:59

496 T ****START OF SCRIPT RUN MODE****

157 529 T ****UNITTEST MODE: False****

SamarkandDevice 92 544 1 test: SamarkandDevice

545 1 start with USB VID: 0x046D, PID: 0xC52B

31
16:28:00

824 1 end!

ListFWs 28 874 4 Choosing a HID++ device

33 896 X 10 00 00 10 00 00 AA ping!

900 X 10 01 00 10 00 00 AA ping!

904 X 10 02 00 10 00 00 AA ping!

908 X 10 03 00 10 00 00 AA ping!

912 X 10 04 00 10 00 00 AA ping!

918 X 10 05 00 10 00 00 AA ping!

922 X 10 06 00 10 00 00 AA ping!

926 X 10 07 00 10 00 00 AA ping!

945 X 10 08 00 10 00 00 AA ping!

36 950 R (150)10 00 8F 00 10 08 00

973 R (1000)10 01 8F 00 10 09 00

974 R (1000)10 03 8F 00 10 09 00

977 R (1000)10 04 8F 00 10 09 00

977 R (1000)10 05 8F 00 10 09 00

979 R (1000)10 06 8F 00 10 09 00

979 R (1000)10 07 8F 00 10 08 00

979
R (1000)11 02 00 10 02 00 AA 00 00 00 00 00 00
00 00 00 00 00 00 00

28 982 1 Found a HID++2.0 device

27 987
X 10 02 00 00 00 03 00 HID++2.0 get address of
0x0003 FWinfo feature

36 987 R (1000)10 08 8F 00 10 08 00

31
16:28:01

028
R (1000)11 02 00 00 03 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00

28 029 1 HID++2.0 getFeatureInfo[2] has index=3

27 033
X 10 02 03 10 00 00 00 HID++2.0 get Main FW
name and build

36 068
R (1000)11 02 03 10 00 52 51 4B 40 00 00 08 00
40 0D 00 00 00 00 00

28 078 1 HID++2.0 has fw=RQK40.00

__main__
31
16:28:02

099 4 RQK40.00 Build: 2 Has been selected.

SamarkandDevice 85 105
X 10 02 00 1E 00 00 AA GetProtocolVersion of
device[2]

137
R 11 02 00 1E 02 00 AA 00 00 00 00 00 00 00 00
00 00 00 00 00

44 162 2 ****device[2] is HID++2.0

51 169 X 10 02 00 0E 00 03 00 GetFeature(0x0003)

196 R 11 02 00 0E 03 00 00 00 00 00 00 00 00 00 00



00 00 00 00 00

117 197 1 GetFeature(0x0003) @ index: 3

124 203
3 [00] is in [00 40 80 C0] -> True --- Has a Valid
feature Type!

37 209 X 10 02 03 1E 00 00 00 GetFwInfo

236
R 11 02 03 1E 00 52 51 4B 40 00 00 08 00 40 0D
00 00 00 00 00

41 236 1 Device[2] is HID++2.0, build number : B0008


