/*
FLAM3 - cosmic recursive fractal flames
Copyright (C) 1992-2009 Spotworks LLC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include
#include
#include "filters.h"
/*
* filter function definitions
* from Graphics Gems III code
* and ImageMagick resize.c
*/
double flam3_spatial_support[flam3_num_spatialfilters] = {
1.5, /* gaussian */
1.0, /* hermite */
0.5, /* box */
1.0, /* triangle */
1.5, /* bell */
2.0, /* b spline */
2.0, /* mitchell */
1.0, /* blackman */
2.0, /* catrom */
1.0, /* hanning */
1.0, /* hamming */
3.0, /* lanczos3 */
2.0, /* lanczos2 */
1.5 /* quadratic */
};
double flam3_hermite_filter(double t) {
/* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
if(t < 0.0) t = -t;
if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
return(0.0);
}
double flam3_box_filter(double t) {
if((t > -0.5) && (t <= 0.5)) return(1.0);
return(0.0);
}
double flam3_triangle_filter(double t) {
if(t < 0.0) t = -t;
if(t < 1.0) return(1.0 - t);
return(0.0);
}
double flam3_bell_filter(double t) {
/* box (*) box (*) box */
if(t < 0) t = -t;
if(t < .5) return(.75 - (t * t));
if(t < 1.5) {
t = (t - 1.5);
return(.5 * (t * t));
}
return(0.0);
}
double flam3_b_spline_filter(double t) {
/* box (*) box (*) box (*) box */
double tt;
if(t < 0) t = -t;
if(t < 1) {
tt = t * t;
return((.5 * tt * t) - tt + (2.0 / 3.0));
} else if(t < 2) {
t = 2 - t;
return((1.0 / 6.0) * (t * t * t));
}
return(0.0);
}
double flam3_sinc(double x) {
x *= M_PI;
if(x != 0) return(sin(x) / x);
return(1.0);
}
double flam3_blackman_filter(double x) {
return(0.42+0.5*cos(M_PI*x)+0.08*cos(2*M_PI*x));
}
double flam3_catrom_filter(double x) {
if (x < -2.0)
return(0.0);
if (x < -1.0)
return(0.5*(4.0+x*(8.0+x*(5.0+x))));
if (x < 0.0)
return(0.5*(2.0+x*x*(-5.0-3.0*x)));
if (x < 1.0)
return(0.5*(2.0+x*x*(-5.0+3.0*x)));
if (x < 2.0)
return(0.5*(4.0+x*(-8.0+x*(5.0-x))));
return(0.0);
}
double flam3_mitchell_filter(double t) {
double tt;
tt = t * t;
if(t < 0) t = -t;
if(t < 1.0) {
t = (((12.0 - 9.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ ((-18.0 + 12.0 * flam3_mitchell_b + 6.0 * flam3_mitchell_c) * tt)
+ (6.0 - 2 * flam3_mitchell_b));
return(t / 6.0);
} else if(t < 2.0) {
t = (((-1.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ ((6.0 * flam3_mitchell_b + 30.0 * flam3_mitchell_c) * tt)
+ ((-12.0 * flam3_mitchell_b - 48.0 * flam3_mitchell_c) * t)
+ (8.0 * flam3_mitchell_b + 24 * flam3_mitchell_c));
return(t / 6.0);
}
return(0.0);
}
double flam3_hanning_filter(double x) {
return(0.5+0.5*cos(M_PI*x));
}
double flam3_hamming_filter(double x) {
return(0.54+0.46*cos(M_PI*x));
}
double flam3_lanczos3_filter(double t) {
if(t < 0) t = -t;
if(t < 3.0) return(flam3_sinc(t) * flam3_sinc(t/3.0));
return(0.0);
}
double flam3_lanczos2_filter(double t) {
if(t < 0) t = -t;
if(t < 2.0) return(flam3_sinc(t) * flam3_sinc(t/2.0));
return(0.0);
}
double flam3_gaussian_filter(double x) {
return(exp((-2.0*x*x))*sqrt(2.0/M_PI));
}
double flam3_quadratic_filter(double x) {
if (x < -1.5)
return(0.0);
if (x < -0.5)
return(0.5*(x+1.5)*(x+1.5));
if (x < 0.5)
return(0.75-x*x);
if (x < 1.5)
return(0.5*(x-1.5)*(x-1.5));
return(0.0);
}
double flam3_spatial_filter(int knum, double x) {
if (knum==0)
return flam3_gaussian_filter(x);
else if (knum==1)
return flam3_hermite_filter(x);
else if (knum==2)
return flam3_box_filter(x);
else if (knum==3)
return flam3_triangle_filter(x);
else if (knum==4)
return flam3_bell_filter(x);
else if (knum==5)
return flam3_b_spline_filter(x);
else if (knum==6)
return flam3_mitchell_filter(x);
else if (knum==7)
return flam3_sinc(x)*flam3_blackman_filter(x);
else if (knum==8)
return flam3_catrom_filter(x);
else if (knum==9)
return flam3_sinc(x)*flam3_hanning_filter(x);
else if (knum==10)
return flam3_sinc(x)*flam3_hamming_filter(x);
else if (knum==11)
return flam3_lanczos3_filter(x)*flam3_sinc(x/3.0);
else if (knum==12)
return flam3_lanczos2_filter(x)*flam3_sinc(x/2.0);
else if (knum==13)
return flam3_quadratic_filter(x);
assert (0);
}
int normalize_vector(double *v, int n) {
double t = 0.0;
int i;
for (i = 0; i < n; i++)
t += v[i];
if (0.0 == t) return 1;
t = 1.0 / t;
for (i = 0; i < n; i++)
v[i] *= t;
return 0;
}
int flam3_create_spatial_filter(flam3_frame *spec, int field, double **filter) {
int sf_kernel = spec->genomes[0].spatial_filter_select;
int supersample = spec->genomes[0].spatial_oversample;
double sf_radius = spec->genomes[0].spatial_filter_radius;
double aspect_ratio = spec->pixel_aspect_ratio;
double sf_supp = flam3_spatial_support[sf_kernel];
double fw = 2.0 * sf_supp * supersample * sf_radius / aspect_ratio;
double adjust, ii, jj;
int fwidth = ((int) fw) + 1;
int i,j;
/* Make sure the filter kernel has same parity as oversample */
if ((fwidth ^ supersample) & 1)
fwidth++;
/* Calculate the coordinate scaling factor for the kernel values */
if (fw > 0.0)
adjust = sf_supp * fwidth / fw;
else
adjust = 1.0;
/* Calling function MUST FREE THE RETURNED KERNEL, lest ye leak memory */
(*filter) = (double *)calloc(fwidth * fwidth,sizeof(double));
/* fill in the coefs */
for (i = 0; i < fwidth; i++)
for (j = 0; j < fwidth; j++) {
/* Calculate the function inputs for the kernel function */
ii = ((2.0 * i + 1.0) / (double)fwidth - 1.0)*adjust;
jj = ((2.0 * j + 1.0) / (double)fwidth - 1.0)*adjust;
/* Scale for scanlines */
if (field) jj *= 2.0;
/* Adjust for aspect ratio */
jj /= aspect_ratio;
(*filter)[i + j * fwidth] =
flam3_spatial_filter(sf_kernel,ii) * flam3_spatial_filter(sf_kernel,jj);
}
if (normalize_vector((*filter), fwidth * fwidth)) {
fprintf(stderr, "Spatial filter value is too small: %g. Terminating.\n",sf_radius);
return(-1);
}
return (fwidth);
}
double flam3_create_temporal_filter(int numsteps, int filter_type, double filter_exp, double filter_width,
double **temporal_filter, double **temporal_deltas) {
double maxfilt = 0.0;
double sumfilt = 0.0;
double slpx,halfsteps;
double *deltas, *filter;
int i;
/* Allocate memory - this must be freed in the calling routine! */
deltas = (double *)malloc(numsteps*sizeof(double));
filter = (double *)malloc(numsteps*sizeof(double));
/* Deal with only one step */
if (numsteps==1) {
deltas[0] = 0;
filter[0] = 1.0;
*temporal_deltas = deltas;
*temporal_filter = filter;
return(1.0);
}
/* Define the temporal deltas */
for (i = 0; i < numsteps; i++)
deltas[i] = ((double)i /(double)(numsteps - 1) - 0.5)*filter_width;
/* Define the filter coefs */
if (flam3_temporal_exp == filter_type) {
for (i=0; i < numsteps; i++) {
if (filter_exp>=0)
slpx = ((double)i+1.0)/numsteps;
else
slpx = (double)(numsteps - i)/numsteps;
/* Scale the color based on these values */
filter[i] = pow(slpx,fabs(filter_exp));
/* Keep the max */
if (filter[i]>maxfilt)
maxfilt = filter[i];
}
} else if (flam3_temporal_gaussian == filter_type) {
halfsteps = numsteps/2.0;
for (i=0; i < numsteps; i++) {
/* Gaussian */
filter[i] = flam3_spatial_filter(flam3_gaussian_kernel,
flam3_spatial_support[flam3_gaussian_kernel]*fabs(i - halfsteps)/halfsteps);
/* Keep the max */
if (filter[i]>maxfilt)
maxfilt = filter[i];
}
} else { // (flam3_temporal_box)
for (i=0; i < numsteps; i++)
filter[i] = 1.0;
maxfilt = 1.0;
}
/* Adjust the filter so that the max is 1.0, and */
/* calculate the K2 scaling factor */
for (i=0;i