/* FLAM3 - cosmic recursive fractal flames Copyright (C) 1992-2009 Spotworks LLC This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef _MSC_VER /* VC++ */ #define _GNU_SOURCE #endif #include "private.h" #include "img.h" #include "config.h" #include "variations.h" #include "interpolation.h" #include "parser.h" #include "filters.h" #include "palettes.h" #include #include #include #ifdef HAVE_STDINT_H #include #endif #ifdef HAVE_UNISTD_H #include #endif #include #ifdef HAVE_LIBPTHREAD #include #endif #ifdef __APPLE__ #include #include #define flam3_os "OSX" #else #ifdef _WIN32 #define WINVER 0x0500 #include #define flam3_os "WIN" #else #define flam3_os "LNX" #endif #endif char *flam3_version() { if (strcmp(SVN_REV, "exported")) return flam3_os "-" VERSION "." SVN_REV; return flam3_os "-" VERSION; } #define CHOOSE_XFORM_GRAIN 16384 #define CHOOSE_XFORM_GRAIN_M1 16383 #define random_distrib(v) ((v)[random()%vlen(v)]) unsigned short *flam3_create_xform_distrib(flam3_genome *cp) { /* Xform distrib is created in this function */ int numrows; int dist_row,i; unsigned short *xform_distrib; numrows = cp->num_xforms - (cp->final_xform_index>=0) + 1; xform_distrib = calloc(numrows*CHOOSE_XFORM_GRAIN,sizeof(unsigned short)); /* First, set up the first row of the xform_distrib (raw weights) */ flam3_create_chaos_distrib(cp, -1, xform_distrib); /* Check for non-unity chaos */ cp->chaos_enable = 1 - flam3_check_unity_chaos(cp); if (cp->chaos_enable) { /* Now set up a row for each of the xforms */ dist_row = 0; for (i=0;inum_xforms;i++) { if (cp->final_xform_index == i) continue; else dist_row++; if (flam3_create_chaos_distrib(cp, i, &(xform_distrib[CHOOSE_XFORM_GRAIN*(dist_row)]))) { free(xform_distrib); return(NULL); } } } return(xform_distrib); } /* Run this on a copy of a genome to get a strip of the output */ int flam3_make_strip(flam3_genome *cp, int nstrips, int stripnum) { double old_center[2]; int j; /* Strip out motion elements */ for (j=0;jnum_xforms;j++) flam3_delete_motion_elements(&cp->xform[j]); old_center[0] = cp->center[0]; old_center[1] = cp->center[1]; cp->height /= nstrips; cp->center[1] = cp->center[1] - ((nstrips - 1) * cp->height) / (2 * cp->pixels_per_unit * pow(2.0, cp->zoom)); cp->center[1] += cp->height * stripnum / ( cp->pixels_per_unit * pow(2.0,cp->zoom) ); rotate_by(cp->center, old_center, cp->rotate); return(0); } void rotate_by(double *p, double *center, double by) { double r[2]; double th = by * 2 * M_PI / 360.0; double c = cos(th); double s = -sin(th); p[0] -= center[0]; p[1] -= center[1]; r[0] = c * p[0] - s * p[1]; r[1] = s * p[0] + c * p[1]; p[0] = r[0] + center[0]; p[1] = r[1] + center[1]; } int flam3_check_unity_chaos(flam3_genome *cp) { int i,j; int num_std; int unity=1; num_std = cp->num_xforms - (cp->final_xform_index >= 0); for (i=0;ichaos[i][j]-1.0) > EPS) unity=0; } } return(unity); } int flam3_create_chaos_distrib(flam3_genome *cp, int xi, unsigned short *xform_distrib) { /* Xform distrib is a preallocated array of CHOOSE_XFORM_GRAIN chars */ /* address of array is passed in, contents are modified */ double t,r,dr; int i,j; int num_std; //fprintf(stdout,"storing at %ld\n",xform_distrib); num_std = cp->num_xforms - (cp->final_xform_index >= 0); dr = 0.0; for (i = 0; i < num_std; i++) { double d = cp->xform[i].density; if (xi>=0) d *= cp->chaos[xi][i]; //fprintf(stdout,"%f ",d); if (d < 0.0) { fprintf(stderr, "xform weight must be non-negative, not %g.\n", d); return(1); } dr += d; } //fprintf(stdout,"dr=%f\n",dr); if (dr == 0.0) { fprintf(stderr, "cannot iterate empty flame.\n"); return(1); } dr = dr / CHOOSE_XFORM_GRAIN; j = 0; t = cp->xform[0].density; if (xi>=0) t *= cp->chaos[xi][0]; r = 0.0; for (i = 0; i < CHOOSE_XFORM_GRAIN; i++) { while (r >= t) { j++; if (xi>=0) t += cp->xform[j].density*cp->chaos[xi][j]; else t += cp->xform[j].density; } //fprintf(stdout,"%d ",j); xform_distrib[i] = j; r += dr; } //fprintf(stdout,"\n---\n"); return(0); } /* * run the function system described by CP forward N generations. store * the N resulting 4-vectors in SAMPLES. the initial point is passed in * SAMPLES[0..3]. ignore the first FUSE iterations. */ int flam3_iterate(flam3_genome *cp, int n, int fuse, double *samples, unsigned short *xform_distrib, randctx *rc) { int i; double p[4], q[4]; int consec = 0; int badvals = 0; int lastxf=0; int fn; p[0] = samples[0]; p[1] = samples[1]; p[2] = samples[2]; p[3] = samples[3]; /* Perform precalculations */ for (i=0;inum_xforms;i++) xform_precalc(cp,i); for (i = -4*fuse; i < 4*n; i+=4) { // fn = xform_distrib[ lastxf*CHOOSE_XFORM_GRAIN + (((unsigned)irand(rc)) % CHOOSE_XFORM_GRAIN)]; if (cp->chaos_enable) fn = xform_distrib[ lastxf*CHOOSE_XFORM_GRAIN + (((unsigned)irand(rc)) & CHOOSE_XFORM_GRAIN_M1)]; else fn = xform_distrib[ ((unsigned)irand(rc)) & CHOOSE_XFORM_GRAIN_M1 ]; if (apply_xform(cp, fn, p, q, rc)>0) { consec ++; badvals ++; if (consec<5) { p[0] = q[0]; p[1] = q[1]; p[2] = q[2]; p[3] = q[3]; i -= 4; continue; } else consec = 0; } else consec = 0; /* Store the last used transform */ lastxf = fn+1; p[0] = q[0]; p[1] = q[1]; p[2] = q[2]; p[3] = q[3]; if (cp->final_xform_enable == 1) { if (cp->xform[cp->final_xform_index].opacity==1 || flam3_random_isaac_01(rc)xform[cp->final_xform_index].opacity) { apply_xform(cp, cp->final_xform_index, p, q, rc); /* Keep the opacity from the original xform */ q[3] = p[3]; } } /* if fuse over, store it */ if (i >= 0) { samples[i] = q[0]; samples[i+1] = q[1]; samples[i+2] = q[2]; samples[i+3] = q[3]; } } return(badvals); } int flam3_xform_preview(flam3_genome *cp, int xi, double range, int numvals, int depth, double *result, randctx *rc) { /* We will evaluate the 'xi'th xform 'depth' times, over the following values: */ /* x in [-range : range], y in [-range : range], with 2* (2*numvals+1)^2 values returned */ double p[4]; double incr; int outi; int xx,yy,dd; double oldweight; outi=0; oldweight = cp->xform[xi].density; cp->xform[xi].density = 1.0; /* Prepare the function pointers */ if (prepare_precalc_flags(cp)) { cp->xform[xi].density = oldweight; return(1); } /* Calculate increment */ incr = range / (double)numvals; /* Perform precalculations */ xform_precalc(cp,xi); /* Loop over the grid */ for (xx=-numvals;xx<=numvals;xx++) { for (yy=-numvals;yy<=numvals;yy++) { /* Calculate the input coordinates */ p[0] = (double)xx * incr; p[1] = (double)yy * incr; /* Loop over the depth */ for (dd=0;ddxform[xi].density = oldweight; return(0); } int flam3_colorhist(flam3_genome *cp, int num_batches, randctx *rc, double *hist) { int lp,plp; int mycolor; unsigned short *xform_distrib; int sbs = 10000; double sub_batch[4*10000]; memset(hist,0,256*sizeof(double)); // get into the attractor if (prepare_precalc_flags(cp)) return(1); xform_distrib = flam3_create_xform_distrib(cp); for (lp=0;lpCMAP_SIZE_M1) mycolor=CMAP_SIZE_M1; hist[mycolor] += 1; } } free(xform_distrib); for (plp=0;plp<256;plp++) hist[plp] /= (float)(num_batches*sbs); return(0); } flam3_genome *sheep_loop(flam3_genome *cp, double blend) { flam3_genome *result; int i; /* Allocate the genome - this must be freed by calling function */ result = calloc(1,sizeof(flam3_genome)); /* Clear it */ clear_cp(result,flam3_defaults_on); /* Copy the original */ flam3_copy(result,cp); /* * Insert motion magic here : * if there are motion elements, we will modify the contents of * the result genome before flam3_rotate is called. */ for (i=0;inum_xforms;i++) { if (cp->xform[i].num_motion>0) { /* Apply motion parameters to result.xform[i] using blend parameter */ apply_motion_parameters(&cp->xform[i], &result->xform[i], blend); } /* Delete the motion parameters from the result */ flam3_delete_motion_elements(&result->xform[i]); } /* Rotate the affines */ flam3_rotate(result, blend*360.0,result->interpolation_type); return(result); } flam3_genome *sheep_edge(flam3_genome *cp, double blend, int seqflag, double stagger) { flam3_genome spun[2]; flam3_genome prealign[2]; flam3_genome *result; int i,si; char *ai; memset(spun, 0, 2*sizeof(flam3_genome)); memset(prealign, 0, 2*sizeof(flam3_genome)); /* Allocate the memory for the result */ result = calloc(1,sizeof(flam3_genome)); /* * Insert motion magic here : * if there are motion elements, we will modify the contents of * the prealign genomes before we rotate and interpolate. */ for (si=0;si<2;si++) { flam3_copy(&prealign[si], &cp[si]); for (i=0;i0) { /* Apply motion parameters to result.xform[i] using blend parameter */ apply_motion_parameters(&cp[si].xform[i], &prealign[si].xform[i], blend); } } } /* Use the un-padded original for blend=0 when creating a sequence */ /* This keeps the original interpolation type intact */ if (seqflag && 0.0 == blend) { flam3_copy(result, &prealign[0]); } else { /* Align what we're going to interpolate */ flam3_align(spun, prealign, 2); spun[0].time = 0.0; spun[1].time = 1.0; /* Call this first to establish the asymmetric reference angles */ establish_asymmetric_refangles(spun,2); /* Rotate the aligned xforms */ flam3_rotate(&spun[0], blend*360.0, spun[0].interpolation_type); flam3_rotate(&spun[1], blend*360.0, spun[0].interpolation_type); /* Now call the interpolation */ if (argi("unsmoother",0) == 0) flam3_interpolate(spun, 2, smoother(blend), stagger, result); else flam3_interpolate(spun, 2, blend, stagger, result); /* Interpolation type no longer needs to be forced to linear mode */ // if (!seqflag) // result.interpolation_type = flam3_inttype_linear; } /* Clear the genomes we used */ clear_cp(&spun[0],flam3_defaults_on); clear_cp(&spun[1],flam3_defaults_on); clear_cp(&prealign[0],flam3_defaults_on); clear_cp(&prealign[1],flam3_defaults_on); /* Make sure there are no motion elements in the result */ for (i=0;inum_xforms;i++) flam3_delete_motion_elements(&result->xform[i]); return(result); } /* BY is angle in degrees */ void flam3_rotate(flam3_genome *cp, double by, int interpolation_type) { int i; for (i = 0; i < cp->num_xforms; i++) { double r[2][2]; double T[2][2]; double U[2][2]; double dtheta = by * 2.0 * M_PI / 360.0; /* Don't rotate xforms with > 0 animate values */ if (cp->xform[i].animate == 0.0) continue; if (cp->xform[i].padding == 1) { if (interpolation_type == flam3_inttype_compat) { /* gen 202 era flam3 did not rotate padded xforms */ continue; } else if (interpolation_type == flam3_inttype_older) { /* not sure if 198 era flam3 rotated padded xforms */ continue; } else if (interpolation_type == flam3_inttype_linear) { /* don't rotate for prettier symsings */ continue; } else if (interpolation_type == flam3_inttype_log) { /* Current flam3: what do we prefer? */ //continue; } } /* Do NOT rotate final xforms */ if (cp->final_xform_enable==1 && cp->final_xform_index==i) continue; r[1][1] = r[0][0] = cos(dtheta); r[0][1] = sin(dtheta); r[1][0] = -r[0][1]; T[0][0] = cp->xform[i].c[0][0]; T[1][0] = cp->xform[i].c[1][0]; T[0][1] = cp->xform[i].c[0][1]; T[1][1] = cp->xform[i].c[1][1]; mult_matrix(r, T, U); cp->xform[i].c[0][0] = U[0][0]; cp->xform[i].c[1][0] = U[1][0]; cp->xform[i].c[0][1] = U[0][1]; cp->xform[i].c[1][1] = U[1][1]; } } #define APPMOT(x) do { addto->x += mot[i].x * motion_funcs(func,freq*blend); } while (0); void apply_motion_parameters(flam3_xform *xf, flam3_xform *addto, double blend) { int i,j,k; int freq; int func; flam3_xform* mot; mot = xf->motion; /* Loop over the motion elements and add their contribution to the original vals */ for (i=0; inum_motion; i++) { freq = mot->motion_freq; func = mot->motion_func; APPMOT(density); /* Must ensure > 0 after all is applied */ APPMOT(color); /* Must ensure [0,1] after all is applied */ APPMOT(opacity); APPMOT(color_speed); APPMOT(animate); APPMOT(blob_low); APPMOT(blob_high); APPMOT(blob_waves); APPMOT(pdj_a); APPMOT(pdj_b); APPMOT(pdj_c); APPMOT(pdj_d); APPMOT(fan2_x); APPMOT(fan2_y); APPMOT(rings2_val); APPMOT(perspective_angle); APPMOT(perspective_dist); APPMOT(julian_power); APPMOT(julian_dist); APPMOT(juliascope_power); APPMOT(juliascope_dist); APPMOT(radial_blur_angle); APPMOT(pie_slices); APPMOT(pie_rotation); APPMOT(pie_thickness); APPMOT(ngon_sides); APPMOT(ngon_power); APPMOT(ngon_circle); APPMOT(ngon_corners); APPMOT(curl_c1); APPMOT(curl_c2); APPMOT(rectangles_x); APPMOT(rectangles_y); APPMOT(amw_amp); APPMOT(disc2_rot); APPMOT(disc2_twist); APPMOT(super_shape_rnd); APPMOT(super_shape_m); APPMOT(super_shape_n1); APPMOT(super_shape_n2); APPMOT(super_shape_n3); APPMOT(super_shape_holes); APPMOT(flower_petals); APPMOT(flower_holes); APPMOT(conic_eccentricity); APPMOT(conic_holes); APPMOT(parabola_height); APPMOT(parabola_width); APPMOT(bent2_x); APPMOT(bent2_y); APPMOT(bipolar_shift); APPMOT(cell_size); APPMOT(cpow_r); APPMOT(cpow_i); APPMOT(cpow_power); APPMOT(curve_xamp); APPMOT(curve_yamp); APPMOT(curve_xlength); APPMOT(curve_ylength); APPMOT(escher_beta); APPMOT(lazysusan_x); APPMOT(lazysusan_y); APPMOT(lazysusan_twist); APPMOT(lazysusan_space); APPMOT(lazysusan_spin); APPMOT(modulus_x); APPMOT(modulus_y); APPMOT(oscope_separation); APPMOT(oscope_frequency); APPMOT(oscope_amplitude); APPMOT(oscope_damping); APPMOT(popcorn2_x); APPMOT(popcorn2_y); APPMOT(popcorn2_c); APPMOT(separation_x); APPMOT(separation_xinside); APPMOT(separation_y); APPMOT(separation_yinside); APPMOT(split_xsize); APPMOT(split_ysize); APPMOT(splits_x); APPMOT(splits_y); APPMOT(stripes_space); APPMOT(stripes_warp); APPMOT(wedge_angle); APPMOT(wedge_hole); APPMOT(wedge_count); APPMOT(wedge_swirl); APPMOT(wedge_julia_angle); APPMOT(wedge_julia_count); APPMOT(wedge_julia_power); APPMOT(wedge_julia_dist); APPMOT(wedge_sph_angle); APPMOT(wedge_sph_hole); APPMOT(wedge_sph_count); APPMOT(wedge_sph_swirl); APPMOT(whorl_inside); APPMOT(whorl_outside); APPMOT(waves2_scalex); APPMOT(waves2_scaley); APPMOT(waves2_freqx); APPMOT(waves2_freqy); APPMOT(auger_sym); APPMOT(auger_weight); APPMOT(auger_freq); APPMOT(auger_scale); APPMOT(flux_spread); APPMOT(mobius_re_a); APPMOT(mobius_re_b); APPMOT(mobius_re_c); APPMOT(mobius_re_d); APPMOT(mobius_im_a); APPMOT(mobius_im_b); APPMOT(mobius_im_c); APPMOT(mobius_im_d); for (j = 0; j < flam3_nvariations; j++) APPMOT(var[j]); for (j=0; j<3; j++) { for (k=0; k<2; k++) { APPMOT(c[j][k]); APPMOT(post[j][k]); } } } /* Make sure certain params are within reasonable bounds */ if (addto->color<0) addto->color=0; if (addto->color>1) addto->color=1; if (addto->density<0) addto->density=0; } /* * create a control point that interpolates between the control points * passed in CPS. CPS must be sorted by time. */ void flam3_interpolate(flam3_genome cps[], int ncps, double time, double stagger, flam3_genome *result) { int i1, i2; double c[2]; flam3_genome cpi[4]; int smoothflag = 0; if (1 == ncps) { flam3_copy(result, &(cps[0])); return; } if (cps[0].time >= time) { i1 = 0; i2 = 1; } else if (cps[ncps - 1].time <= time) { i1 = ncps - 2; i2 = ncps - 1; } else { i1 = 0; while (cps[i1].time < time) i1++; i1--; i2 = i1 + 1; } c[0] = (cps[i2].time - time) / (cps[i2].time - cps[i1].time); c[1] = 1.0 - c[0]; memset(cpi, 0, 4*sizeof(flam3_genome)); /* To interpolate the xforms, we will make copies of the source cps */ /* and ensure that they both have the same number before progressing */ if (flam3_interpolation_linear == cps[i1].interpolation) { flam3_align(&cpi[0], &cps[i1], 2); smoothflag = 0; } else { if (0 == i1) { fprintf(stderr, "error: cannot use smooth interpolation on first segment.\n"); fprintf(stderr, "reverting to linear interpolation.\n"); flam3_align(&cpi[0], &cps[i1], 2); smoothflag = 0; } if (ncps-1 == i2) { fprintf(stderr, "error: cannot use smooth interpolation on last segment.\n"); fprintf(stderr, "reverting to linear interpolation.\n"); flam3_align(&cpi[0], &cps[i1], 2); smoothflag = 0; } flam3_align(&cpi[0], &cps[i1-1], 4); smoothflag = 1; } /* Clear the destination cp */ clear_cp(result, 1); if (cpi[0].final_xform_index >= 0) { flam3_add_xforms(result, cpi[0].num_xforms-1, 0, 0); flam3_add_xforms(result, 1, 0, 1); } else flam3_add_xforms(result, cpi[0].num_xforms, 0, 0); result->time = time; result->interpolation = flam3_interpolation_linear; result->interpolation_type = cpi[0].interpolation_type; result->palette_interpolation = flam3_palette_interpolation_hsv; if (!smoothflag) { flam3_interpolate_n(result, 2, cpi, c, stagger); } else { interpolate_catmull_rom(cpi, c[1], result); clear_cp(&(cpi[2]),0); clear_cp(&(cpi[3]),0); } clear_cp(&(cpi[0]),0); clear_cp(&(cpi[1]),0); } void flam3_copy_params(flam3_xform *dest, flam3_xform *src, int varn) { /* We only want to copy param var coefs for this one */ if (varn==VAR_BLOB) { /* Blob */ dest->blob_low = src->blob_low; dest->blob_high = src->blob_high; dest->blob_waves = src->blob_waves; } else if (varn==VAR_PDJ) { /* PDJ */ dest->pdj_a = src->pdj_a; dest->pdj_b = src->pdj_b; dest->pdj_c = src->pdj_c; dest->pdj_d = src->pdj_d; } else if (varn==VAR_FAN2) { /* Fan2 */ dest->fan2_x = src->fan2_x; dest->fan2_y = src->fan2_y; } else if (varn==VAR_RINGS2) { /* Rings2 */ dest->rings2_val = src->rings2_val; } else if (varn==VAR_PERSPECTIVE) { /* Perspective */ dest->perspective_angle = src->perspective_angle; dest->perspective_dist = src->perspective_dist; dest->persp_vsin = src->persp_vsin; dest->persp_vfcos = src->persp_vfcos; } else if (varn==VAR_JULIAN) { /* Julia_N */ dest->julian_power = src->julian_power; dest->julian_dist = src->julian_dist; dest->julian_rN = src->julian_rN; dest->julian_cn = src->julian_cn; } else if (varn==VAR_JULIASCOPE) { /* Julia_Scope */ dest->juliascope_power = src->juliascope_power; dest->juliascope_dist = src->juliascope_dist; dest->juliascope_rN = src->juliascope_rN; dest->juliascope_cn = src->juliascope_cn; } else if (varn==VAR_RADIAL_BLUR) { /* Radial Blur */ dest->radial_blur_angle = src->radial_blur_angle; } else if (varn==VAR_PIE) { /* Pie */ dest->pie_slices = src->pie_slices; dest->pie_rotation = src->pie_rotation; dest->pie_thickness = src->pie_thickness; } else if (varn==VAR_NGON) { /* Ngon */ dest->ngon_sides = src->ngon_sides; dest->ngon_power = src->ngon_power; dest->ngon_corners = src->ngon_corners; dest->ngon_circle = src->ngon_circle; } else if (varn==VAR_CURL) { /* Curl */ dest->curl_c1 = src->curl_c1; dest->curl_c2 = src->curl_c2; } else if (varn==VAR_RECTANGLES) { /* Rect */ dest->rectangles_x = src->rectangles_x; dest->rectangles_y = src->rectangles_y; } else if (varn==VAR_DISC2) { /* Disc2 */ dest->disc2_rot = src->disc2_rot; dest->disc2_twist = src->disc2_twist; } else if (varn==VAR_SUPER_SHAPE) { /* Supershape */ dest->super_shape_rnd = src->super_shape_rnd; dest->super_shape_m = src->super_shape_m; dest->super_shape_n1 = src->super_shape_n1; dest->super_shape_n2 = src->super_shape_n2; dest->super_shape_n3 = src->super_shape_n3; dest->super_shape_holes = src->super_shape_holes; } else if (varn==VAR_FLOWER) { /* Flower */ dest->flower_petals = src->flower_petals; dest->flower_petals = src->flower_petals; } else if (varn==VAR_CONIC) { /* Conic */ dest->conic_eccentricity = src->conic_eccentricity; dest->conic_holes = src->conic_holes; } else if (varn==VAR_PARABOLA) { /* Parabola */ dest->parabola_height = src->parabola_height; dest->parabola_width = src->parabola_width; } else if (varn==VAR_BENT2) { /* Bent2 */ dest->bent2_x = src->bent2_x; dest->bent2_y = src->bent2_y; } else if (varn==VAR_BIPOLAR) { /* Bipolar */ dest->bipolar_shift = src->bipolar_shift; } else if (varn==VAR_CELL) { /* Cell */ dest->cell_size = src->cell_size; } else if (varn==VAR_CPOW) { /* Cpow */ dest->cpow_i = src->cpow_i; dest->cpow_r = src->cpow_r; dest->cpow_power = src->cpow_power; } else if (varn==VAR_CURVE) { /* Curve */ dest->curve_xamp = src->curve_xamp; dest->curve_yamp = src->curve_yamp; dest->curve_xlength = src->curve_xlength; dest->curve_ylength = src->curve_ylength; } else if (varn==VAR_ESCHER) { /* Escher */ dest->escher_beta = src->escher_beta; } else if (varn==VAR_LAZYSUSAN) { /* Lazysusan */ dest->lazysusan_x = src->lazysusan_x; dest->lazysusan_y = src->lazysusan_y; dest->lazysusan_spin = src->lazysusan_spin; dest->lazysusan_space = src->lazysusan_space; dest->lazysusan_twist = src->lazysusan_twist; } else if (varn==VAR_MODULUS) { /* Modulus */ dest->modulus_x = src->modulus_x; dest->modulus_y = src->modulus_y; } else if (varn==VAR_OSCILLOSCOPE) { /* Oscope */ dest->oscope_separation = src->oscope_separation; dest->oscope_frequency = src->oscope_frequency; dest->oscope_amplitude = src->oscope_amplitude; dest->oscope_damping = src->oscope_damping; } else if (varn==VAR_POPCORN2) { /* Popcorn2 */ dest->popcorn2_x = src->popcorn2_x; dest->popcorn2_y = src->popcorn2_y; dest->popcorn2_c = src->popcorn2_c; } else if (varn==VAR_SEPARATION) { /* Separation */ dest->separation_x = src->separation_x; dest->separation_y = src->separation_y; dest->separation_xinside = src->separation_xinside; dest->separation_yinside = src->separation_yinside; } else if (varn==VAR_SPLIT) { /* Split */ dest->split_xsize = src->split_xsize; dest->split_ysize = src->split_ysize; } else if (varn==VAR_SPLITS) { /* Splits */ dest->splits_x = src->splits_x; dest->splits_y = src->splits_y; } else if (varn==VAR_STRIPES) { /* Stripes */ dest->stripes_space = src->stripes_space; dest->stripes_warp = src->stripes_warp; } else if (varn==VAR_WEDGE) { /* Wedge */ dest->wedge_angle = src->wedge_angle; dest->wedge_hole = src->wedge_hole; dest->wedge_count = src->wedge_count; dest->wedge_swirl = src->wedge_swirl; } else if (varn==VAR_WEDGE_JULIA) { /* Wedge_Julia */ dest->wedge_julia_angle = src->wedge_julia_angle; dest->wedge_julia_count = src->wedge_julia_count; dest->wedge_julia_power = src->wedge_julia_power; dest->wedge_julia_dist = src->wedge_julia_dist; dest->wedgeJulia_cf = src->wedgeJulia_cf; dest->wedgeJulia_cn = src->wedgeJulia_cn; dest->wedgeJulia_rN = src->wedgeJulia_rN; } else if (varn==VAR_WEDGE_SPH) { /* Wedge_sph */ dest->wedge_sph_angle = src->wedge_sph_angle; dest->wedge_sph_hole = src->wedge_sph_hole; dest->wedge_sph_count = src->wedge_sph_count; dest->wedge_sph_swirl = src->wedge_sph_swirl; } else if (varn==VAR_WHORL) { /* whorl */ dest->whorl_inside = src->whorl_inside; dest->whorl_outside = src->whorl_outside; } else if (varn==VAR_WAVES2) { /* waves2 */ dest->waves2_scalex = src->waves2_scalex; dest->waves2_scaley = src->waves2_scaley; dest->waves2_freqx = src->waves2_freqx; dest->waves2_freqy = src->waves2_freqy; } else if (varn==VAR_AUGER) { /* auger */ dest->auger_sym = src->auger_sym; dest->auger_weight = src->auger_weight; dest->auger_freq = src->auger_freq; dest->auger_scale = src->auger_scale; } else if (varn==VAR_FLUX) { /* flux */ dest->flux_spread = src->flux_spread; } else if (varn==VAR_MOBIUS) { /* mobius */ dest->mobius_re_a = src->mobius_re_a; dest->mobius_re_b = src->mobius_re_b; dest->mobius_re_c = src->mobius_re_c; dest->mobius_re_d = src->mobius_re_d; dest->mobius_im_a = src->mobius_im_a; dest->mobius_im_b = src->mobius_im_b; dest->mobius_im_c = src->mobius_im_c; dest->mobius_im_d = src->mobius_im_d; } } /* Motion support functions */ void flam3_add_motion_element(flam3_xform *xf) { /* Add one to the xform's count of motion elements */ xf->num_motion++; /* Reallocate the motion storage to include the empty space */ xf->motion = (struct xform *)realloc(xf->motion, xf->num_motion * sizeof(struct xform)); /* Initialize the motion element */ /* In this case, all elements should be set to 0 */ memset( &(xf->motion[xf->num_motion-1]), 0, sizeof(struct xform)); } /* Motion support functions */ void flam3_delete_motion_elements(flam3_xform *xf) { /* Free the motion elements */ if (xf->num_motion>0) { free(xf->motion); xf->num_motion = 0; } } /* Xform support functions */ void flam3_add_xforms(flam3_genome *thiscp, int num_to_add, int interp_padding, int final_flag) { int i,j; int old_num = thiscp->num_xforms; int oldstd,numstd; flam3_xform tmp; oldstd = thiscp->num_xforms - (thiscp->final_xform_index >= 0); /* !!! must make sure that if final_flag is specified, we don't already have a final xform! !!! */ // if (thiscp->num_xforms > 0) thiscp->xform = (flam3_xform *)realloc(thiscp->xform, (thiscp->num_xforms + num_to_add) * sizeof(flam3_xform)); // else // thiscp->xform = (flam3_xform *)malloc(num_to_add * sizeof(flam3_xform)); thiscp->num_xforms += num_to_add; /* Initialize all the new xforms */ initialize_xforms(thiscp, old_num); /* Set the padding flag for the new xforms */ if (interp_padding) { for (i = old_num ; i < thiscp->num_xforms ; i++) thiscp->xform[i].padding=1; } /* If the final xform is not the last xform in the list, make it so */ if (thiscp->final_xform_index >= 0 && thiscp->final_xform_index != thiscp->num_xforms-1) { tmp = thiscp->xform[thiscp->final_xform_index]; for (i=thiscp->final_xform_index; i < thiscp->num_xforms-1; i++) thiscp->xform[i] = thiscp->xform[i+1]; thiscp->final_xform_index = thiscp->num_xforms-1; thiscp->xform[thiscp->final_xform_index] = tmp; } if (final_flag) { /* Set the final xform index */ thiscp->final_xform_enable = 1; thiscp->final_xform_index = thiscp->num_xforms-1; } else { /* Handle the chaos array */ numstd = thiscp->num_xforms - (thiscp->final_xform_index>=0); /* Pad existing rows */ for (i=0;ichaos[i] = realloc(thiscp->chaos[i], numstd * sizeof(double)); for (j=oldstd; jchaos[i][j] = 1.0; } /* Add new rows */ thiscp->chaos = realloc(thiscp->chaos,numstd * sizeof(double *)); for (i=oldstd; ichaos[i] = malloc(numstd * sizeof(double)); for (j=0;jchaos[i][j] = 1.0; } } } void flam3_delete_xform(flam3_genome *thiscp, int idx_to_delete) { int i,j; int num_std = thiscp->num_xforms - (thiscp->final_xform_index >= 0); if (thiscp->final_xform_index != idx_to_delete) { /* We're going to delete the nth std xform. */ /* Delete the nth_std row of the chaos array */ free(thiscp->chaos[idx_to_delete]); /* Shift the pointers down one */ for (i=idx_to_delete+1;ichaos[i-1] = thiscp->chaos[i]; /* Realloc the pointer array */ thiscp->chaos = realloc(thiscp->chaos,(num_std-1)*sizeof(double *)); num_std--; /* Loop over all of the rows and remove the nth_std element from them */ for (i=0;ichaos[i][j-1] = thiscp->chaos[i][j]; } /* Realloc the vector to have one less element */ thiscp->chaos[i] = realloc(thiscp->chaos[i],num_std*sizeof(double)); } } /* Handle the final xform index */ if (thiscp->final_xform_index == idx_to_delete) { thiscp->final_xform_index = -1; thiscp->final_xform_enable = 0; } else if (thiscp->final_xform_index > idx_to_delete) { thiscp->final_xform_index--; } /* Delete the motion elements of the banished xform */ flam3_delete_motion_elements(&(thiscp->xform[idx_to_delete])); /* Move all of the xforms down one - this does not require manual motion xform adjustment */ for (i=idx_to_delete; inum_xforms-1; i++) thiscp->xform[i] = thiscp->xform[i+1]; thiscp->num_xforms--; /* Reduce the memory storage by one xform */ thiscp->xform = (flam3_xform *)realloc(thiscp->xform, sizeof(flam3_xform) * thiscp->num_xforms); } void flam3_copy_xform(flam3_xform *dest, flam3_xform *src) { int j; /* Make sure the dest doesn't have motion already */ if (dest->num_motion>0) flam3_delete_motion_elements(dest); /* Copy everything */ *dest = *src; /* Reset motion in dest and copy it */ dest->num_motion=0; dest->motion=NULL; if (src->num_motion>0) { for (j=0;jnum_motion;j++) flam3_add_motion_element(dest); memcpy(dest->motion,src->motion,src->num_motion*sizeof(flam3_xform)); } } /* Copy one control point to another */ void flam3_copy(flam3_genome *dest, flam3_genome *src) { int i,ii; int numstd; /* If there are any xforms in dest before the copy, clean them up */ clear_cp(dest, 1); /* Copy main contents of genome */ memcpy(dest, src, sizeof(flam3_genome)); /* Only the pointer to the xform was copied, not the actual xforms. */ /* We need to create new xform memory storage for this new cp */ /* This goes for chaos, too. */ dest->num_xforms = 0; dest->final_xform_index = -1; dest->xform = NULL; dest->chaos = NULL; /* Add the standard xforms first */ numstd = src->num_xforms-(src->final_xform_index>=0); flam3_add_xforms(dest, numstd, 0, 0); for (i=0;ixform[i], &src->xform[i]); /* Add the final x if it's present */ if (src->final_xform_index>=0) { i = src->final_xform_index; flam3_add_xforms(dest, 1, 0, 1); ii = dest->final_xform_index; flam3_copy_xform(&dest->xform[ii],&src->xform[i]); } /* Also, only the pointer to the chaos array was copied. * We have to take care of that as well. */ for (i=0;ichaos[i],src->chaos[i], numstd * sizeof(double)); } void flam3_copyx(flam3_genome *dest, flam3_genome *src, int dest_std_xforms, int dest_final_xform) { int i,numsrcstd; /* If there are any xforms in dest before the copy, clean them up */ clear_cp(dest, 1); /* Copy main contents of genome */ memcpy(dest, src, sizeof(flam3_genome)); /* Only the pointer to the xform was copied, not the actual xforms. */ /* We need to create new xform memory storage for this new cp */ /* This goes for chaos, too. */ dest->num_xforms = 0; dest->xform = NULL; dest->chaos = NULL; dest->final_xform_index = -1; /* Add the padded standard xform list */ /* Set the pad to 1 for these */ flam3_add_xforms(dest, dest_std_xforms, 1, 0); numsrcstd = src->num_xforms - (src->final_xform_index >= 0); for(i=0;ixform[i],&src->xform[i]); /* Copy the initial chaos from the src - the rest are already 1 */ memcpy(dest->chaos[i], src->chaos[i], numsrcstd*sizeof(double)); } /* Add the final xform if necessary */ if (dest_final_xform > 0) { flam3_add_xforms(dest, dest_final_xform, 1, 1); if (src->final_xform_enable > 0) { i = src->final_xform_index; flam3_copy_xform(&dest->xform[dest->num_xforms-1],&src->xform[i]); } else { /* Interpolated-against final xforms need animate & color_speed set to 0.0 */ dest->xform[dest->num_xforms-1].num_motion = 0; dest->xform[dest->num_xforms-1].motion=NULL; dest->xform[dest->num_xforms-1].animate=0.0; dest->xform[dest->num_xforms-1].color_speed=0.0; } } else { dest->final_xform_index = -1; dest->final_xform_enable = 0; } } void clear_cp(flam3_genome *cp, int default_flag) { cp->palette_index = flam3_palette_random; cp->center[0] = 0.0; cp->center[1] = 0.0; cp->rot_center[0] = 0.0; cp->rot_center[1] = 0.0; cp->gamma = 4.0; cp->vibrancy = 1.0; cp->contrast = 1.0; cp->brightness = 4.0; cp->symmetry = 0; cp->hue_rotation = 0.0; cp->rotate = 0.0; cp->pixels_per_unit = 50; cp->interpolation = flam3_interpolation_linear; cp->palette_interpolation = flam3_palette_interpolation_hsv; cp->genome_index = 0; memset(cp->parent_fname,0,flam3_parent_fn_len); if (default_flag==flam3_defaults_on) { /* If defaults are on, set to reasonable values */ cp->highlight_power = -1.0; cp->background[0] = 0.0; cp->background[1] = 0.0; cp->background[2] = 0.0; cp->width = 100; cp->height = 100; cp->spatial_oversample = 1; cp->spatial_filter_radius = 0.5; cp->zoom = 0.0; cp->sample_density = 1; /* Density estimation stuff defaulting to ON */ cp->estimator = 9.0; cp->estimator_minimum = 0.0; cp->estimator_curve = 0.4; cp->gam_lin_thresh = 0.01; // cp->motion_exp = 0.0; cp->nbatches = 1; cp->ntemporal_samples = 1000; cp->spatial_filter_select = flam3_gaussian_kernel; cp->interpolation_type = flam3_inttype_log; cp->temporal_filter_type = flam3_temporal_box; cp->temporal_filter_width = 1.0; cp->temporal_filter_exp = 0.0; cp->palette_mode = flam3_palette_mode_step; } else { /* Defaults are off, so set to UN-reasonable values. */ cp->highlight_power = -1.0; cp->background[0] = -1.0; cp->background[1] = -1.0; cp->background[2] = -1.0; cp->zoom = 999999999; cp->spatial_oversample = -1; cp->spatial_filter_radius = -1; cp->nbatches = -1; cp->ntemporal_samples = -1; cp->width = -1; cp->height = -1; cp->sample_density = -1; cp->estimator = -1; cp->estimator_minimum = -1; cp->estimator_curve = -1; cp->gam_lin_thresh = -1; // cp->motion_exp = -999; cp->nbatches = 0; cp->ntemporal_samples = 0; cp->spatial_filter_select = -1; cp->interpolation_type = -1; cp->temporal_filter_type = -1; cp->temporal_filter_width = -1; cp->temporal_filter_exp = -999; cp->palette_mode = -1; } if (cp->xform != NULL && cp->num_xforms > 0) { int i; int ns = cp->num_xforms - (cp->final_xform_index>=0); for (i=0;ichaos[i]); } free(cp->chaos); cp->chaos=NULL; for (i=0;inum_xforms;i++) flam3_delete_motion_elements(&cp->xform[i]); free(cp->xform); cp->xform=NULL; cp->num_xforms = 0; } cp->final_xform_enable = 0; cp->final_xform_index = -1; } int flam3_count_nthreads(void) { int nthreads; #ifndef HAVE_LIBPTHREAD return(1); #endif #ifdef _WIN32 SYSTEM_INFO sysInfo; GetSystemInfo(&sysInfo); nthreads = sysInfo.dwNumberOfProcessors; #else #ifdef __APPLE__ kern_return_t kr; host_name_port_t host; unsigned int size; struct host_basic_info hi; host = mach_host_self(); size = sizeof(hi)/sizeof(int); kr = host_info(host, HOST_BASIC_INFO, (host_info_t)&hi, &size); if (kr != KERN_SUCCESS) { mach_error("host_info():", kr); /* set threads to 1 on error */ nthreads = 1; } else nthreads = hi.avail_cpus; #else #ifndef _SC_NPROCESSORS_ONLN char line[MAXBUF]; FILE *f = fopen("/proc/cpuinfo", "r"); if (NULL == f) goto def; nthreads = 0; while (fgets(line, MAXBUF, f)) { if (!strncmp("processor\t:", line, 11)) nthreads++; } fclose(f); if (nthreads < 1) goto def; return (nthreads); def: fprintf(stderr, "could not read /proc/cpuinfo, using one render thread.\n"); nthreads = 1; #else nthreads = sysconf(_SC_NPROCESSORS_ONLN); if (nthreads < 1) nthreads = 1; #endif #endif #endif return (nthreads); } flam3_genome *flam3_parse_xml2(char *xmldata, char *xmlfilename, int default_flag, int *ncps) { xmlDocPtr doc; /* Parsed XML document tree */ xmlNode *rootnode; char *bn; int i; int loc_all_ncps=0; flam3_genome *loc_all_cp=NULL; char* locale = NULL; char* lorig = setlocale(LC_NUMERIC, NULL); /* Parse XML string into internal document */ /* Forbid network access during read */ doc = xmlReadMemory(xmldata, (int)strlen(xmldata), xmlfilename, NULL, XML_PARSE_NONET); /* Check for errors */ if (doc==NULL) { fprintf(stderr, "Failed to parse %s\n", xmlfilename); return NULL; } /* What is the root node of the document? */ rootnode = xmlDocGetRootElement(doc); // force use of "C" locale when writing reals. // first save away the current settings. if (lorig == NULL) fprintf(stderr, "error: couldn't get current locale\n"); else { int slen = strlen(lorig) + 1; locale = (char*)malloc(slen); if (locale != NULL) memcpy(locale, lorig, slen); } if (setlocale(LC_NUMERIC, "C") == NULL) fprintf(stderr, "error: couldn't set C locale\n"); /* Scan for nodes, starting with this node */ bn = basename(xmlfilename); /* Have to use &loc_all_cp since the memory gets allocated in scan_for_flame_nodes */ scan_for_flame_nodes(rootnode, bn, default_flag,&loc_all_cp,&loc_all_ncps); // restore locale if (locale != NULL) { if (setlocale(LC_NUMERIC, locale) == NULL) fprintf(stderr, "error: couldn't replace locale settings\n"); free(locale); } xmlFreeDoc(doc); *ncps = loc_all_ncps; /* Check to see if the first control point or the second-to-last */ /* control point has interpolation="smooth". This is invalid */ /* and should be reset to linear (with a warning). */ if (loc_all_ncps>=1) { if (loc_all_cp[0].interpolation == flam3_interpolation_smooth) { fprintf(stderr,"Warning: smooth interpolation cannot be used for first segment.\n" " switching to linear.\n"); loc_all_cp[0].interpolation = flam3_interpolation_linear; } } if (loc_all_ncps>=2) { if (loc_all_cp[(loc_all_ncps)-2].interpolation == flam3_interpolation_smooth) { fprintf(stderr,"Warning: smooth interpolation cannot be used for last segment.\n" " switching to linear.\n"); loc_all_cp[loc_all_ncps-2].interpolation = flam3_interpolation_linear; } } /* Finally, ensure that consecutive 'rotate' parameters never exceed */ /* a difference of more than 180 degrees (+/-) for interpolation. */ /* An adjustment of +/- 360 degrees is made until this is true. */ if (*ncps>1) { for (i=1;i<*ncps;i++) { /* Only do this adjustment if we're not in compat mode */ if (flam3_inttype_compat != loc_all_cp[i-1].interpolation_type && flam3_inttype_older != loc_all_cp[i-1].interpolation_type) { while (loc_all_cp[i].rotate < loc_all_cp[i-1].rotate-180) loc_all_cp[i].rotate += 360; while (loc_all_cp[i].rotate > loc_all_cp[i-1].rotate+180) loc_all_cp[i].rotate -= 360; } } } //Note that concurrent calls to flam3, if in parallel, potentially segfault //if this function is called. technically it's required but it doesn't //leak memory continuously. //xmlCleanupParser(); return loc_all_cp; } flam3_genome * flam3_parse_from_file(FILE *f, char *fname, int default_flag, int *ncps) { int i, c, slen = 5000; char *s, *snew; flam3_genome *ret; /* Incrementally read XML file into a string */ s = malloc(slen); i = 0; do { c = getc(f); if (EOF == c) break; s[i++] = c; if (i == slen-1) { slen *= 2; snew = realloc(s, slen); if (snew==NULL) { fprintf(stderr,"XML file too large to be read. continuing with partial file.\n"); break; } else s = snew; } } while (1); /* Null-terminate the read XML data */ s[i] = 0; /* Parse the XML string */ if (fname) ret = flam3_parse_xml2(s, fname, default_flag, ncps); else ret = flam3_parse_xml2(s, "stdin", default_flag, ncps); free(s); return(ret); } void flam3_apply_template(flam3_genome *cp, flam3_genome *templ) { /* Check for invalid values - only replace those with valid ones */ if (templ->background[0] >= 0) cp->background[0] = templ->background[0]; if (templ->background[1] >= 0) cp->background[1] = templ->background[1]; if (templ->background[1] >= 0) cp->background[2] = templ->background[2]; if (templ->zoom < 999999998) cp->zoom = templ->zoom; if (templ->spatial_oversample > 0) cp->spatial_oversample = templ->spatial_oversample; if (templ->spatial_filter_radius >= 0) cp->spatial_filter_radius = templ->spatial_filter_radius; if (templ->sample_density > 0) cp->sample_density = templ->sample_density; if (templ->nbatches > 0) cp->nbatches = templ->nbatches; if (templ->ntemporal_samples > 0) cp->ntemporal_samples = templ->ntemporal_samples; if (templ->width > 0) { /* preserving scale should be an option */ cp->pixels_per_unit = cp->pixels_per_unit * templ->width / cp->width; cp->width = templ->width; } if (templ->height > 0) cp->height = templ->height; if (templ->estimator >= 0) cp->estimator = templ->estimator; if (templ->estimator_minimum >= 0) cp->estimator_minimum = templ->estimator_minimum; if (templ->estimator_curve >= 0) cp->estimator_curve = templ->estimator_curve; if (templ->gam_lin_thresh >= 0) cp->gam_lin_thresh = templ->gam_lin_thresh; if (templ->nbatches>0) cp->nbatches = templ->nbatches; if (templ->ntemporal_samples>0) cp->ntemporal_samples = templ->ntemporal_samples; if (templ->spatial_filter_select>0) cp->spatial_filter_select = templ->spatial_filter_select; if (templ->interpolation >= 0) cp->interpolation = templ->interpolation; if (templ->interpolation_type >= 0) cp->interpolation_type = templ->interpolation_type; if (templ->temporal_filter_type >= 0) cp->temporal_filter_type = templ->temporal_filter_type; if (templ->temporal_filter_width > 0) cp->temporal_filter_width = templ->temporal_filter_width; if (templ->temporal_filter_exp > -900) cp->temporal_filter_exp = templ->temporal_filter_exp; if (templ->highlight_power >=0) cp->highlight_power = templ->highlight_power; if (templ->palette_mode >= 0) cp->palette_mode = templ->palette_mode; } char *flam3_print_to_string(flam3_genome *cp) { FILE *tmpflame; long stringbytes; char *genome_string; int using_tmpdir = 0; char *tmp_path; char tmpnam[256]; tmpflame = tmpfile(); if (NULL==tmpflame) { #ifdef _WIN32 // This might be a permissions problem, so let's try to open a // tempfile in the env var TEMP's area instead tmp_path = getenv("TEMP"); if (tmp_path != NULL) { strcpy(tmpnam, tmp_path); strcat(tmpnam, "\\fr0st.tmp"); tmpflame = fopen(tmpnam, "w+"); if (tmpflame != NULL) { using_tmpdir = 1; } } #endif if (using_tmpdir == 0) { perror("FLAM3: opening temporary file"); return (NULL); } } flam3_print(tmpflame,cp,NULL,flam3_dont_print_edits); stringbytes = ftell(tmpflame); fseek(tmpflame,0L, SEEK_SET); genome_string = (char *)calloc(stringbytes+1,1); if (stringbytes != fread(genome_string, 1, stringbytes, tmpflame)) { perror("FLAM3: reading string from temp file"); } fclose(tmpflame); if (using_tmpdir) unlink(tmpnam); return(genome_string); } void flam3_print(FILE *f, flam3_genome *cp, char *extra_attributes, int print_edits) { int i,numstd; int flam27_flag; char *ai; // force use of "C" locale when writing reals. // first save away the current settings. char* locale = NULL; char* lorig = setlocale(LC_NUMERIC, NULL); if (lorig == NULL) fprintf(stderr, "error: couldn't get current locale\n"); else { int slen = strlen(lorig) + 1; locale = (char*)malloc(slen); if (locale != NULL) memcpy(locale, lorig, slen); } if (setlocale(LC_NUMERIC, "C") == NULL) fprintf(stderr, "error: couldn't set C locale\n"); flam27_flag = argi("flam27",0); fprintf(f, "time); if (cp->flame_name[0]!=0) fprintf(f, " name=\"%s\"",cp->flame_name); fprintf(f, " size=\"%d %d\"", cp->width, cp->height); fprintf(f, " center=\"%g %g\"", cp->center[0], cp->center[1]); fprintf(f, " scale=\"%g\"", cp->pixels_per_unit); if (cp->zoom != 0.0) fprintf(f, " zoom=\"%g\"", cp->zoom); fprintf(f, " rotate=\"%g\"", cp->rotate); fprintf(f, " supersample=\"%d\"", cp->spatial_oversample); fprintf(f, " filter=\"%g\"", cp->spatial_filter_radius); /* Need to print the correct kernel to use */ if (cp->spatial_filter_select == flam3_gaussian_kernel) fprintf(f, " filter_shape=\"gaussian\""); else if (cp->spatial_filter_select == flam3_hermite_kernel) fprintf(f, " filter_shape=\"hermite\""); else if (cp->spatial_filter_select == flam3_box_kernel) fprintf(f, " filter_shape=\"box\""); else if (cp->spatial_filter_select == flam3_triangle_kernel) fprintf(f, " filter_shape=\"triangle\""); else if (cp->spatial_filter_select == flam3_bell_kernel) fprintf(f, " filter_shape=\"bell\""); else if (cp->spatial_filter_select == flam3_b_spline_kernel) fprintf(f, " filter_shape=\"bspline\""); else if (cp->spatial_filter_select == flam3_mitchell_kernel) fprintf(f, " filter_shape=\"mitchell\""); else if (cp->spatial_filter_select == flam3_blackman_kernel) fprintf(f, " filter_shape=\"blackman\""); else if (cp->spatial_filter_select == flam3_catrom_kernel) fprintf(f, " filter_shape=\"catrom\""); else if (cp->spatial_filter_select == flam3_hanning_kernel) fprintf(f, " filter_shape=\"hanning\""); else if (cp->spatial_filter_select == flam3_hamming_kernel) fprintf(f, " filter_shape=\"hamming\""); else if (cp->spatial_filter_select == flam3_lanczos3_kernel) fprintf(f, " filter_shape=\"lanczos3\""); else if (cp->spatial_filter_select == flam3_lanczos2_kernel) fprintf(f, " filter_shape=\"lanczos2\""); else if (cp->spatial_filter_select == flam3_quadratic_kernel) fprintf(f, " filter_shape=\"quadratic\""); if (cp->temporal_filter_type == flam3_temporal_box) fprintf(f, " temporal_filter_type=\"box\""); else if (cp->temporal_filter_type == flam3_temporal_gaussian) fprintf(f, " temporal_filter_type=\"gaussian\""); else if (cp->temporal_filter_type == flam3_temporal_exp) fprintf(f, " temporal_filter_type=\"exp\" temporal_filter_exp=\"%g\"",cp->temporal_filter_exp); fprintf(f, " temporal_filter_width=\"%g\"",cp->temporal_filter_width); fprintf(f, " quality=\"%g\"", cp->sample_density); fprintf(f, " passes=\"%d\"", cp->nbatches); fprintf(f, " temporal_samples=\"%d\"", cp->ntemporal_samples); fprintf(f, " background=\"%g %g %g\"", cp->background[0], cp->background[1], cp->background[2]); fprintf(f, " brightness=\"%g\"", cp->brightness); fprintf(f, " gamma=\"%g\"", cp->gamma); if (!flam27_flag) fprintf(f, " highlight_power=\"%g\"", cp->highlight_power); fprintf(f, " vibrancy=\"%g\"", cp->vibrancy); fprintf(f, " estimator_radius=\"%g\" estimator_minimum=\"%g\" estimator_curve=\"%g\"", cp->estimator, cp->estimator_minimum, cp->estimator_curve); fprintf(f, " gamma_threshold=\"%g\"", cp->gam_lin_thresh); if (flam3_palette_mode_step == cp->palette_mode) fprintf(f, " palette_mode=\"step\""); else if (flam3_palette_mode_linear == cp->palette_mode) fprintf(f, " palette_mode=\"linear\""); if (flam3_interpolation_linear != cp->interpolation) fprintf(f, " interpolation=\"smooth\""); if (flam3_inttype_linear == cp->interpolation_type) fprintf(f, " interpolation_type=\"linear\""); else if (flam3_inttype_log == cp->interpolation_type) fprintf(f, " interpolation_type=\"log\""); else if (flam3_inttype_compat == cp->interpolation_type) fprintf(f, " interpolation_type=\"old\""); else if (flam3_inttype_older == cp->interpolation_type) fprintf(f, " interpolation_type=\"older\""); if (flam3_palette_interpolation_hsv != cp->palette_interpolation) fprintf(f, " palette_interpolation=\"sweep\""); if (extra_attributes) fprintf(f, " %s", extra_attributes); fprintf(f, ">\n"); if (cp->symmetry) fprintf(f, " \n", cp->symmetry); numstd = cp->num_xforms - (cp->final_xform_index>=0); for (i = 0; i < cp->num_xforms; i++) { if (i==cp->final_xform_index) flam3_print_xform(f, &cp->xform[i], 1, numstd, NULL, 0); else flam3_print_xform(f, &cp->xform[i], 0, numstd, cp->chaos[i], 0); } int hexpalette = argi("hexpalette",0); if (hexpalette) { fprintf(f," "); for (i=0; i < 256; i++) { int r, g, b; r = rint(cp->palette[i].color[0] * 255.0); g = rint(cp->palette[i].color[1] * 255.0); b = rint(cp->palette[i].color[2] * 255.0); if (i % 8 == 0) { fprintf(f,"\n"); fprintf(f," "); } fprintf(f,"%2x%2x%2x",r,g,b); } fprintf(f,"\n"); fprintf(f," \n"); } else { for (i = 0; i < 256; i++) { double r, g, b, a; r = (cp->palette[i].color[0] * 255.0); g = (cp->palette[i].color[1] * 255.0); b = (cp->palette[i].color[2] * 255.0); a = (cp->palette[i].color[3] * 255.0); fprintf(f, " "); if (flam27_flag || a==255.0) { if (flam27_flag && a!=255.0) fprintf(stderr,"alpha channel in palette cannot be stored in 2.7 compatibility mode; truncating\n"); if (getenv("intpalette")) fprintf(f, "", i, (int)rint(r), (int)rint(g), (int)rint(b)); else { #ifdef USE_FLOAT_INDICES fprintf(f, "", cp->palette[i].index, r, g, b); #else fprintf(f, "", i, r, g, b); #endif } } else { if (getenv("intpalette")) fprintf(f, " ", i, (int)rint(r), (int)rint(g), (int)rint(b), (int)rint(a)); else fprintf(f, " ", i, r, g, b, a); } // if (i%4 == 3) fprintf(f, "\n"); } } if (cp->edits != NULL && print_edits==flam3_print_edits) { /* We need a custom script for printing these */ /* and it needs to be recursive */ xmlNodePtr elem_node = xmlDocGetRootElement(cp->edits); flam3_edit_print(f,elem_node, 1, 1); } fprintf(f, "\n"); if (locale != NULL) { if (setlocale(LC_NUMERIC, locale) == NULL) fprintf(stderr, "error: couldn't restore locale settings\n"); free(locale); } } #define PRINTNON(p) do { if (x->p != 0.0) fprintf(f, #p "=\"%f\" ",x->p); } while(0) void flam3_print_xform(FILE *f, flam3_xform *x, int final_flag, int numstd, double *chaos_row, int motion_flag) { int blob_var=0,pdj_var=0,fan2_var=0,rings2_var=0,perspective_var=0; int juliaN_var=0,juliaScope_var=0,radialBlur_var=0,pie_var=0,disc2_var=0; int ngon_var=0,curl_var=0,rectangles_var=0,supershape_var=0; int flower_var=0,conic_var=0,parabola_var=0,bent2_var=0,bipolar_var=0; int cell_var=0,cpow_var=0,curve_var=0,escher_var=0,lazys_var=0; int modulus_var=0,oscope_var=0,popcorn2_var=0,separation_var=0; int split_var=0,splits_var=0,stripes_var=0,wedge_var=0,wedgeJ_var=0; int wedgeS_var=0,whorl_var=0,waves2_var=0,auger_var=0,flux_var=0; int mobius_var=0; int j; int lnv; int flam27_flag; char *ai; flam27_flag = argi("flam27",0); /* Motion flag will not be set if flam27_flag is set */ if (motion_flag) { fprintf(f, " motion_freq); if (x->motion_func == MOTION_SIN) fprintf(f, "motion_function=\"sin\" "); else if (x->motion_func == MOTION_TRIANGLE) fprintf(f, "motion_function=\"triangle\" "); else if (x->motion_func == MOTION_HILL) fprintf(f, "motion_function=\"hill\" "); } else { if (final_flag) fprintf(f, " density); } if (!motion_flag || x->color != 0.0) fprintf(f, "color=\"%g\" ", x->color); if (flam27_flag) fprintf(f, "symmetry=\"%g\" ", 1.0-2.0*x->color_speed); else if (!motion_flag) fprintf(f, "color_speed=\"%g\" ", x->color_speed); if (!final_flag && !motion_flag && !flam27_flag) fprintf(f, "animate=\"%g\" ", x->animate); lnv = flam27_flag ? 54:flam3_nvariations; for (j = 0; j < lnv; j++) { double v = x->var[j]; if (0.0 != v) { fprintf(f, "%s=\"%g\" ", flam3_variation_names[j], v); if (j==VAR_BLOB) blob_var=1; else if (j==VAR_PDJ) pdj_var=1; else if (j==VAR_FAN2) fan2_var=1; else if (j==VAR_RINGS2) rings2_var=1; else if (j==VAR_PERSPECTIVE) perspective_var=1; else if (j==VAR_JULIAN) juliaN_var=1; else if (j==VAR_JULIASCOPE) juliaScope_var=1; else if (j==VAR_RADIAL_BLUR) radialBlur_var=1; else if (j==VAR_PIE) pie_var=1; else if (j==VAR_NGON) ngon_var=1; else if (j==VAR_CURL) curl_var=1; else if (j==VAR_RECTANGLES) rectangles_var=1; else if (j==VAR_DISC2) disc2_var=1; else if (j==VAR_SUPER_SHAPE) supershape_var=1; else if (j==VAR_FLOWER) flower_var=1; else if (j==VAR_CONIC) conic_var=1; else if (j==VAR_PARABOLA) parabola_var=1; else if (j==VAR_BENT2) bent2_var=1; else if (j==VAR_BIPOLAR) bipolar_var=1; else if (j==VAR_CELL) cell_var=1; else if (j==VAR_CPOW) cpow_var=1; else if (j==VAR_CURVE) curve_var=1; else if (j==VAR_ESCHER) escher_var=1; else if (j==VAR_LAZYSUSAN) lazys_var=1; else if (j==VAR_MODULUS) modulus_var=1; else if (j==VAR_OSCILLOSCOPE) oscope_var=1; else if (j==VAR_POPCORN2) popcorn2_var=1; else if (j==VAR_SPLIT) split_var=1; else if (j==VAR_SPLITS) splits_var=1; else if (j==VAR_STRIPES) stripes_var=1; else if (j==VAR_WEDGE) wedge_var=1; else if (j==VAR_WEDGE_JULIA) wedgeJ_var=1; else if (j==VAR_WEDGE_SPH) wedgeS_var=1; else if (j==VAR_WHORL) whorl_var=1; else if (j==VAR_WAVES2) waves2_var=1; else if (j==VAR_AUGER) auger_var=1; else if (j==VAR_FLUX) flux_var=1; else if (j==VAR_MOBIUS) mobius_var=1; } } if (!motion_flag) { if (blob_var==1) { fprintf(f, "blob_low=\"%g\" ", x->blob_low); fprintf(f, "blob_high=\"%g\" ", x->blob_high); fprintf(f, "blob_waves=\"%g\" ", x->blob_waves); } if (pdj_var==1) { fprintf(f, "pdj_a=\"%g\" ", x->pdj_a); fprintf(f, "pdj_b=\"%g\" ", x->pdj_b); fprintf(f, "pdj_c=\"%g\" ", x->pdj_c); fprintf(f, "pdj_d=\"%g\" ", x->pdj_d); } if (fan2_var==1) { fprintf(f, "fan2_x=\"%g\" ", x->fan2_x); fprintf(f, "fan2_y=\"%g\" ", x->fan2_y); } if (rings2_var==1) { fprintf(f, "rings2_val=\"%g\" ", x->rings2_val); } if (perspective_var==1) { fprintf(f, "perspective_angle=\"%g\" ", x->perspective_angle); fprintf(f, "perspective_dist=\"%g\" ", x->perspective_dist); } if (juliaN_var==1) { fprintf(f, "julian_power=\"%g\" ", x->julian_power); fprintf(f, "julian_dist=\"%g\" ", x->julian_dist); } if (juliaScope_var==1) { fprintf(f, "juliascope_power=\"%g\" ", x->juliascope_power); fprintf(f, "juliascope_dist=\"%g\" ", x->juliascope_dist); } if (radialBlur_var==1) { fprintf(f, "radial_blur_angle=\"%g\" ", x->radial_blur_angle); } if (pie_var==1) { fprintf(f, "pie_slices=\"%g\" ", x->pie_slices); fprintf(f, "pie_rotation=\"%g\" ", x->pie_rotation); fprintf(f, "pie_thickness=\"%g\" ", x->pie_thickness); } if (ngon_var==1) { fprintf(f, "ngon_sides=\"%g\" ", x->ngon_sides); fprintf(f, "ngon_power=\"%g\" ", x->ngon_power); fprintf(f, "ngon_corners=\"%g\" ", x->ngon_corners); fprintf(f, "ngon_circle=\"%g\" ", x->ngon_circle); } if (curl_var==1) { fprintf(f, "curl_c1=\"%g\" ", x->curl_c1); fprintf(f, "curl_c2=\"%g\" ", x->curl_c2); } if (rectangles_var==1) { fprintf(f, "rectangles_x=\"%g\" ", x->rectangles_x); fprintf(f, "rectangles_y=\"%g\" ", x->rectangles_y); } if (disc2_var==1) { fprintf(f, "disc2_rot=\"%g\" ", x->disc2_rot); fprintf(f, "disc2_twist=\"%g\" ", x->disc2_twist); } if (supershape_var==1) { fprintf(f, "super_shape_rnd=\"%g\" ", x->super_shape_rnd); fprintf(f, "super_shape_m=\"%g\" ", x->super_shape_m); fprintf(f, "super_shape_n1=\"%g\" ", x->super_shape_n1); fprintf(f, "super_shape_n2=\"%g\" ", x->super_shape_n2); fprintf(f, "super_shape_n3=\"%g\" ", x->super_shape_n3); fprintf(f, "super_shape_holes=\"%g\" ", x->super_shape_holes); } if (flower_var==1) { fprintf(f, "flower_petals=\"%g\" ", x->flower_petals); fprintf(f, "flower_holes=\"%g\" ", x->flower_holes); } if (conic_var==1) { fprintf(f, "conic_eccentricity=\"%g\" ", x->conic_eccentricity); fprintf(f, "conic_holes=\"%g\" ", x->conic_holes); } if (parabola_var==1) { fprintf(f, "parabola_height=\"%g\" ", x->parabola_height); fprintf(f, "parabola_width=\"%g\" ", x->parabola_width); } if (bent2_var==1) { fprintf(f, "bent2_x=\"%g\" ", x->bent2_x); fprintf(f, "bent2_y=\"%g\" ", x->bent2_y); } if (bipolar_var==1) { fprintf(f, "bipolar_shift=\"%g\" ", x->bipolar_shift); } if (cell_var==1) { fprintf(f, "cell_size=\"%g\" ", x->cell_size); } if (cpow_var==1) { fprintf(f, "cpow_i=\"%g\" ", x->cpow_i); fprintf(f, "cpow_r=\"%g\" ", x->cpow_r); fprintf(f, "cpow_power=\"%g\" ", x->cpow_power); } if (curve_var==1) { fprintf(f, "curve_xamp=\"%g\" ", x->curve_xamp); fprintf(f, "curve_yamp=\"%g\" ", x->curve_yamp); fprintf(f, "curve_xlength=\"%g\" ", x->curve_xlength); fprintf(f, "curve_ylength=\"%g\" ", x->curve_ylength); } if (escher_var==1) { fprintf(f, "escher_beta=\"%g\" ", x->escher_beta); } if (lazys_var==1) { fprintf(f, "lazysusan_x=\"%g\" ", x->lazysusan_x); fprintf(f, "lazysusan_y=\"%g\" ", x->lazysusan_y); fprintf(f, "lazysusan_spin=\"%g\" ", x->lazysusan_spin); fprintf(f, "lazysusan_space=\"%g\" ", x->lazysusan_space); fprintf(f, "lazysusan_twist=\"%g\" ", x->lazysusan_twist); } if (modulus_var==1) { fprintf(f, "modulus_x=\"%g\" ", x->modulus_x); fprintf(f, "modulus_y=\"%g\" ", x->modulus_y); } if (oscope_var==1) { fprintf(f, "oscilloscope_separation=\"%g\" ", x->oscope_separation); fprintf(f, "oscilloscope_frequency=\"%g\" ", x->oscope_frequency); fprintf(f, "oscilloscope_amplitude=\"%g\" ", x->oscope_amplitude); fprintf(f, "oscilloscope_damping=\"%g\" ", x->oscope_damping); } if (popcorn2_var==1) { fprintf(f, "popcorn2_x=\"%g\" ", x->popcorn2_x); fprintf(f, "popcorn2_y=\"%g\" ", x->popcorn2_y); fprintf(f, "popcorn2_c=\"%g\" ", x->popcorn2_c); } if (separation_var==1) { fprintf(f, "separation_x=\"%g\" ", x->separation_x); fprintf(f, "separation_y=\"%g\" ", x->separation_y); fprintf(f, "separation_xinside=\"%g\" ", x->separation_xinside); fprintf(f, "separation_yinside=\"%g\" ", x->separation_yinside); } if (split_var==1) { fprintf(f, "split_xsize=\"%g\" ", x->split_xsize); fprintf(f, "split_ysize=\"%g\" ", x->split_ysize); } if (splits_var==1) { fprintf(f, "splits_x=\"%g\" ", x->splits_x); fprintf(f, "splits_y=\"%g\" ", x->splits_y); } if (stripes_var==1) { fprintf(f, "stripes_space=\"%g\" ", x->stripes_space); fprintf(f, "stripes_warp=\"%g\" ", x->stripes_warp); } if (wedge_var==1) { fprintf(f, "wedge_angle=\"%g\" ", x->wedge_angle); fprintf(f, "wedge_hole=\"%g\" ", x->wedge_hole); fprintf(f, "wedge_count=\"%g\" ", x->wedge_count); fprintf(f, "wedge_swirl=\"%g\" ", x->wedge_swirl); } if (wedgeJ_var==1) { fprintf(f, "wedge_julia_angle=\"%g\" ", x->wedge_julia_angle); fprintf(f, "wedge_julia_count=\"%g\" ", x->wedge_julia_count); fprintf(f, "wedge_julia_power=\"%g\" ", x->wedge_julia_power); fprintf(f, "wedge_julia_dist=\"%g\" ", x->wedge_julia_dist); } if (wedgeS_var==1) { fprintf(f, "wedge_sph_angle=\"%g\" ", x->wedge_sph_angle); fprintf(f, "wedge_sph_hole=\"%g\" ", x->wedge_sph_hole); fprintf(f, "wedge_sph_count=\"%g\" ", x->wedge_sph_count); fprintf(f, "wedge_sph_swirl=\"%g\" ", x->wedge_sph_swirl); } if (whorl_var==1) { fprintf(f, "whorl_inside=\"%g\" ", x->whorl_inside); fprintf(f, "whorl_outside=\"%g\" ", x->whorl_outside); } if (waves2_var==1) { fprintf(f, "waves2_scalex=\"%g\" ", x->waves2_scalex); fprintf(f, "waves2_scaley=\"%g\" ", x->waves2_scaley); fprintf(f, "waves2_freqx=\"%g\" ", x->waves2_freqx); fprintf(f, "waves2_freqy=\"%g\" ", x->waves2_freqy); } if (auger_var==1) { fprintf(f, "auger_sym=\"%g\" ", x->auger_sym); fprintf(f, "auger_weight=\"%g\" ", x->auger_weight); fprintf(f, "auger_freq=\"%g\" ", x->auger_freq); fprintf(f, "auger_scale=\"%g\" ", x->auger_scale); } if (flux_var==1) fprintf(f, "flux_spread=\"%g\" ", x->flux_spread); if (mobius_var==1) { fprintf(f, "mobius_re_a=\"%g\" ", x->mobius_re_a); fprintf(f, "mobius_im_a=\"%g\" ", x->mobius_im_a); fprintf(f, "mobius_re_b=\"%g\" ", x->mobius_re_b); fprintf(f, "mobius_im_b=\"%g\" ", x->mobius_im_b); fprintf(f, "mobius_re_c=\"%g\" ", x->mobius_re_c); fprintf(f, "mobius_im_c=\"%g\" ", x->mobius_im_c); fprintf(f, "mobius_re_d=\"%g\" ", x->mobius_re_d); fprintf(f, "mobius_im_d=\"%g\" ", x->mobius_im_d); } fprintf(f, "coefs=\""); for (j = 0; j < 3; j++) { if (j) fprintf(f, " "); fprintf(f, "%g %g", x->c[j][0], x->c[j][1]); } fprintf(f, "\""); if (!id_matrix(x->post)) { fprintf(f, " post=\""); for (j = 0; j < 3; j++) { if (j) fprintf(f, " "); fprintf(f, "%g %g", x->post[j][0], x->post[j][1]); } fprintf(f, "\""); } } else { /* For motion, print any parameter if it's nonzero */ PRINTNON(blob_low); PRINTNON(blob_high); PRINTNON(blob_waves); PRINTNON(pdj_a); PRINTNON(pdj_b); PRINTNON(pdj_c); PRINTNON(pdj_d); PRINTNON(fan2_x); PRINTNON(fan2_y); PRINTNON(rings2_val); PRINTNON(perspective_angle); PRINTNON(perspective_dist); PRINTNON(julian_power); PRINTNON(julian_dist); PRINTNON(juliascope_power); PRINTNON(juliascope_dist); PRINTNON(radial_blur_angle); PRINTNON(pie_slices); PRINTNON(pie_rotation); PRINTNON(pie_thickness); PRINTNON(ngon_sides); PRINTNON(ngon_power); PRINTNON(ngon_corners); PRINTNON(ngon_circle); PRINTNON(curl_c1); PRINTNON(curl_c2); PRINTNON(rectangles_x); PRINTNON(rectangles_y); PRINTNON(disc2_rot); PRINTNON(disc2_twist); PRINTNON(super_shape_rnd); PRINTNON(super_shape_m); PRINTNON(super_shape_n1); PRINTNON(super_shape_n2); PRINTNON(super_shape_n3); PRINTNON(super_shape_holes); PRINTNON(flower_petals); PRINTNON(flower_holes); PRINTNON(conic_eccentricity); PRINTNON(conic_holes); PRINTNON(parabola_height); PRINTNON(parabola_width); PRINTNON(bent2_x); PRINTNON(bent2_y); PRINTNON(bipolar_shift); PRINTNON(cell_size); PRINTNON(cpow_i); PRINTNON(cpow_r); PRINTNON(cpow_power); PRINTNON(curve_xamp); PRINTNON(curve_yamp); PRINTNON(curve_xlength); PRINTNON(curve_ylength); PRINTNON(escher_beta); PRINTNON(lazysusan_x); PRINTNON(lazysusan_y); PRINTNON(lazysusan_spin); PRINTNON(lazysusan_space); PRINTNON(lazysusan_twist); PRINTNON(modulus_x); PRINTNON(modulus_y); PRINTNON(oscope_separation); PRINTNON(oscope_frequency); PRINTNON(oscope_amplitude); PRINTNON(oscope_damping); PRINTNON(popcorn2_x); PRINTNON(popcorn2_y); PRINTNON(popcorn2_c); PRINTNON(separation_x); PRINTNON(separation_y); PRINTNON(separation_xinside); PRINTNON(separation_yinside); PRINTNON(split_xsize); PRINTNON(split_ysize); PRINTNON(splits_x); PRINTNON(splits_y); PRINTNON(stripes_space); PRINTNON(stripes_warp); PRINTNON(wedge_angle); PRINTNON(wedge_hole); PRINTNON(wedge_count); PRINTNON(wedge_swirl); PRINTNON(wedge_julia_angle); PRINTNON(wedge_julia_count); PRINTNON(wedge_julia_power); PRINTNON(wedge_julia_dist); PRINTNON(wedge_sph_angle); PRINTNON(wedge_sph_hole); PRINTNON(wedge_sph_count); PRINTNON(wedge_sph_swirl); PRINTNON(whorl_inside); PRINTNON(whorl_outside); PRINTNON(waves2_scalex); PRINTNON(waves2_scaley); PRINTNON(waves2_freqx); PRINTNON(waves2_freqy); PRINTNON(auger_sym); PRINTNON(auger_weight); PRINTNON(auger_freq); PRINTNON(auger_scale); PRINTNON(flux_spread); PRINTNON(mobius_re_a); PRINTNON(mobius_im_a); PRINTNON(mobius_re_b); PRINTNON(mobius_im_b); PRINTNON(mobius_re_c); PRINTNON(mobius_im_c); PRINTNON(mobius_re_d); PRINTNON(mobius_im_d); if (!zero_matrix(x->c)) { fprintf(f, "coefs=\""); for (j = 0; j < 3; j++) { if (j) fprintf(f, " "); fprintf(f, "%g %g", x->c[j][0], x->c[j][1]); } fprintf(f, "\""); } if (!zero_matrix(x->post)) { fprintf(f, " post=\""); for (j = 0; j < 3; j++) { if (j) fprintf(f, " "); fprintf(f, "%g %g", x->post[j][0], x->post[j][1]); } fprintf(f, "\""); } } if (!final_flag && !motion_flag && !flam27_flag) { /* Print out the chaos row for this xform */ int numcols = numstd; while (numcols > 0 && chaos_row[numcols-1]==1.0) numcols--; if (numcols>0) { fprintf(f, " chaos=\""); for (j=0;jopacity); } if (!motion_flag && x->num_motion>0 && !flam27_flag) { int nm; fprintf(f,">\n"); for (nm=0; nmnum_motion; nm++) flam3_print_xform(f, &(x->motion[nm]), 0, 0, NULL, 1); if (final_flag) fprintf(f," \n"); else fprintf(f," \n"); } else fprintf(f, "/>\n"); } /* returns a uniform variable from 0 to 1 */ double flam3_random01() { return (random() & 0xfffffff) / (double) 0xfffffff; } double flam3_random11() { return ((random() & 0xfffffff) - 0x7ffffff) / (double) 0x7ffffff; } /* This function must be called prior to rendering a frame */ void flam3_init_frame(flam3_frame *f) { char *ai; char *isaac_seed = args("isaac_seed",NULL); long int default_isaac_seed = (long int)time(0); /* Clear out the isaac state */ memset(f->rc.randrsl, 0, RANDSIZ*sizeof(ub4)); /* Set the isaac seed */ if (NULL == isaac_seed) { int lp; /* No isaac seed specified. Use the system time to initialize. */ for (lp = 0; lp < RANDSIZ; lp++) f->rc.randrsl[lp] = default_isaac_seed; } else { /* Use the specified string */ strncpy((char *)&f->rc.randrsl,(const char *)isaac_seed, RANDSIZ*sizeof(ub4)); } /* Initialize the random number generator */ irandinit(&f->rc,1); } /* returns uniform variable from ISAAC rng */ double flam3_random_isaac_01(randctx *ct) { return ((int)irand(ct) & 0xfffffff) / (double) 0xfffffff; } double flam3_random_isaac_11(randctx *ct) { return (((int)irand(ct) & 0xfffffff) - 0x7ffffff) / (double) 0x7ffffff; } int flam3_random_bit() { /* might not be threadsafe */ static int n = 0; static int l; if (0 == n) { l = random(); n = 20; } else { l = l >> 1; n--; } return l & 1; } int flam3_random_isaac_bit(randctx *ct) { int tmp = irand(ct); return tmp & 1; } static double round6(double x) { x *= 1e6; if (x < 0) x -= 1.0; return 1e-6*(int)(x+0.5); } /* sym=2 or more means rotational sym=1 means identity, ie no symmetry sym=0 means pick a random symmetry (maybe none) sym=-1 means bilateral (reflection) sym=-2 or less means rotational and reflective */ void flam3_add_symmetry(flam3_genome *cp, int sym) { int i, j, k; double a; int result = 0; if (0 == sym) { static int sym_distrib[] = { -4, -3, -2, -2, -2, -1, -1, -1, 2, 2, 2, 3, 3, 4, 4, }; if (random()&1) { sym = random_distrib(sym_distrib); } else if (random()&31) { sym = (random()%13)-6; } else { sym = (random()%51)-25; } } if (1 == sym || 0 == sym) return; cp->symmetry = sym; if (sym < 0) { i = cp->num_xforms; if (cp->final_xform_enable) i -= 1; flam3_add_xforms(cp,1,0,0); cp->xform[i].density = 1.0; cp->xform[i].color_speed = 0.0; cp->xform[i].animate = 0.0; cp->xform[i].var[0] = 1.0; for (j = 1; j < flam3_nvariations; j++) cp->xform[i].var[j] = 0; cp->xform[i].color = 1.0; cp->xform[i].c[0][0] = -1.0; cp->xform[i].c[0][1] = 0.0; cp->xform[i].c[1][0] = 0.0; cp->xform[i].c[1][1] = 1.0; cp->xform[i].c[2][0] = 0.0; cp->xform[i].c[2][1] = 0.0; result++; sym = -sym; } a = 2*M_PI/sym; for (k = 1; k < sym; k++) { i = cp->num_xforms; if (cp->final_xform_enable) i -= 1; flam3_add_xforms(cp, 1, 0,0); cp->xform[i].density = 1.0; cp->xform[i].color_speed = 0.0; cp->xform[i].animate = 0.0; cp->xform[i].var[0] = 1.0; for (j = 1; j < flam3_nvariations; j++) cp->xform[i].var[j] = 0; cp->xform[i].color = (sym<3) ? 0.0 : ((k-1.0)/(sym-2.0)); cp->xform[i].c[0][0] = round6(cos(k*a)); cp->xform[i].c[0][1] = round6(sin(k*a)); cp->xform[i].c[1][0] = round6(-cp->xform[i].c[0][1]); cp->xform[i].c[1][1] = cp->xform[i].c[0][0]; cp->xform[i].c[2][0] = 0.0; cp->xform[i].c[2][1] = 0.0; result++; } qsort((char *) &cp->xform[cp->num_xforms-result], result, sizeof(flam3_xform), compare_xforms); } void add_to_action(char *action, char *addtoaction) { /* action is a flam3_max_action_length array */ if (action != NULL) { int alen = strlen(action); int addlen = strlen(addtoaction); if (alen+addlen < flam3_max_action_length) strcat(action,addtoaction); else fprintf(stderr,"action string too long, truncating...\n"); } } void flam3_cross(flam3_genome *cp0, flam3_genome *cp1, flam3_genome *out, int cross_mode, randctx *rc, char *action) { int i0,i1, i,j, rb; char ministr[10]; if (cross_mode == CROSS_NOT_SPECIFIED) { double s = flam3_random_isaac_01(rc); if (s < 0.1) cross_mode = CROSS_UNION; else if (s < 0.2) cross_mode = CROSS_INTERPOLATE; else cross_mode = CROSS_ALTERNATE; } if (cross_mode == CROSS_UNION) { flam3_xform mycopy; /* Make a copy of cp0 */ flam3_copy(out, cp0); for (j=0;jnum_xforms;j++) { /* Skip over the final xform, if it's present. */ /* Default behavior keeps the final from parent0. */ if (cp1->final_xform_index == j) continue; i = out->num_xforms; if (out->final_xform_enable) i -= 1; flam3_add_xforms(out, 1, 0, 0); flam3_copy_xform(&out->xform[i],&cp1->xform[j]); } /* Put the final xform last (if there is one) */ /* We do not need to do complicated xform copies here since we're just moving them around */ if (out->final_xform_index >= 0) { mycopy = out->xform[out->final_xform_index]; out->xform[out->final_xform_index] = out->xform[out->num_xforms-1]; out->xform[out->num_xforms-1] = mycopy; out->final_xform_index = out->num_xforms-1; } add_to_action(action,"cross union"); } else if (cross_mode == CROSS_INTERPOLATE) { /* linearly interpolate somewhere between the two */ flam3_genome parents[2]; double t = flam3_random_isaac_01(rc); memset(parents, 0, 2*sizeof(flam3_genome)); flam3_copy(&(parents[0]), cp0); flam3_copy(&(parents[1]), cp1); parents[0].time = 0.0; parents[1].time = 1.0; flam3_interpolate(parents, 2, t, 0, out); for (i=0;inum_xforms;i++) flam3_delete_motion_elements(&out->xform[i]); clear_cp(&parents[0],flam3_defaults_on); clear_cp(&parents[1],flam3_defaults_on); sprintf(ministr,"%7.5g",t); add_to_action(action,"cross interpolate "); add_to_action(action,ministr); } else { /* alternate mode */ int got0, got1, used_parent; char *trystr; trystr = calloc(4 * (cp0->num_xforms + cp1->num_xforms), sizeof(char)); /* each xform comes from a random parent, possible for an entire parent to be excluded */ do { trystr[0] = 0; got0 = got1 = 0; rb = flam3_random_isaac_bit(rc); sprintf(ministr,"%d:",rb); strcat(trystr,ministr); /* Copy the parent, sorting the final xform to the end if it's present. */ if (rb) flam3_copyx(out, cp1, cp1->num_xforms - (cp1->final_xform_index > 0), cp1->final_xform_enable); else flam3_copyx(out, cp0, cp0->num_xforms - (cp0->final_xform_index > 0), cp0->final_xform_enable); used_parent = rb; /* Only replace non-final xforms */ for (i = 0; i < out->num_xforms - out->final_xform_enable; i++) { rb = flam3_random_isaac_bit(rc); /* Replace xform if bit is 1 */ if (rb==1) { if (used_parent==0) { if (i < cp1->num_xforms && cp1->xform[i].density > 0) { flam3_copy_xform(&out->xform[i],&cp1->xform[i]); sprintf(ministr," 1"); got1 = 1; } else { sprintf(ministr," 0"); got0 = 1; } } else { if (i < cp0->num_xforms && cp0->xform[i].density > 0) { flam3_copy_xform(&out->xform[i],&cp0->xform[i]); sprintf(ministr," 0"); got0 = 1; } else { sprintf(ministr," 1"); got1 = 1; } } } else { sprintf(ministr," %d",used_parent); if (used_parent) got1 = 1; else got0 = 1; } strcat(trystr,ministr); } if (used_parent==0 && cp0->final_xform_enable) got0 = 1; else if (used_parent==1 && cp1->final_xform_enable) got1 = 1; } while ((i > 1) && !(got0 && got1)); add_to_action(action,"cross alternate "); add_to_action(action,trystr); free(trystr); } /* reset color coords */ for (i = 0; i < out->num_xforms; i++) { out->xform[i].color = i&1; } /* Potentially genetically cross the two colormaps together */ if (flam3_random_isaac_01(rc) < 0.4) { /* Select the starting parent */ int startParent=flam3_random_isaac_bit(rc); int ci; add_to_action(action," cmap_cross"); sprintf(ministr," %d:",startParent); add_to_action(action,ministr); /* Loop over the entries, switching to the other parent 1% of the time */ for (ci=0;ci<256;ci++) { if (flam3_random_isaac_01(rc)<.01) { startParent = 1-startParent; sprintf(ministr," %d",ci); add_to_action(action,ministr); } out->palette[ci] = startParent ? cp1->palette[ci]: cp0->palette[ci]; } } } void flam3_mutate(flam3_genome *cp, int mutate_mode, int *ivars, int ivars_n, int sym, double speed, randctx *rc, char *action) { double randselect; flam3_genome mutation; int i,j,done; char ministr[30]; /* If mutate_mode = -1, choose a random mutation mode */ if (mutate_mode == MUTATE_NOT_SPECIFIED) { randselect = flam3_random_isaac_01(rc); if (randselect < 0.1) mutate_mode = MUTATE_ALL_VARIATIONS; else if (randselect < 0.3) mutate_mode = MUTATE_ONE_XFORM_COEFS; else if (randselect < 0.5) mutate_mode = MUTATE_ADD_SYMMETRY; else if (randselect < 0.6) mutate_mode = MUTATE_POST_XFORMS; else if (randselect < 0.7) mutate_mode = MUTATE_COLOR_PALETTE; else if (randselect < 0.8) mutate_mode = MUTATE_DELETE_XFORM; else mutate_mode = MUTATE_ALL_COEFS; } memset(&mutation, 0, sizeof(flam3_genome)); if (mutate_mode == MUTATE_ALL_VARIATIONS) { add_to_action(action,"mutate all variations"); do { /* Create a random flame, and use the variations */ /* to replace those in the original */ flam3_random(&mutation, ivars, ivars_n, sym, cp->num_xforms); for (i = 0; i < cp->num_xforms; i++) { for (j = 0; j < flam3_nvariations; j++) { if (cp->xform[i].var[j] != mutation.xform[i].var[j]) { /* Copy the new var weights */ cp->xform[i].var[j] = mutation.xform[i].var[j]; /* Copy parameters for this variation only */ flam3_copy_params(&(cp->xform[i]),&(mutation.xform[i]),j); done = 1; } } } } while (!done); } else if (mutate_mode == MUTATE_ONE_XFORM_COEFS) { int modxf; /* Generate a 2-xform random */ flam3_random(&mutation, ivars, ivars_n, sym, 2); /* Which xform do we mutate? */ modxf = ((unsigned)irand(rc)) % cp->num_xforms; add_to_action(action,"mutate xform "); sprintf(ministr,"%d coefs",modxf); add_to_action(action,ministr); /* if less than 3 xforms, then change only the translation part */ if (2 >= cp->num_xforms) { for (j = 0; j < 2; j++) cp->xform[modxf].c[2][j] = mutation.xform[0].c[2][j]; } else { for (i = 0; i < 3; i++) for (j = 0; j < 2; j++) cp->xform[modxf].c[i][j] = mutation.xform[0].c[i][j]; } } else if (mutate_mode == MUTATE_ADD_SYMMETRY) { add_to_action(action,"mutate symmetry"); flam3_add_symmetry(cp, 0); } else if (mutate_mode == MUTATE_POST_XFORMS) { int b = 1 + ((unsigned)irand(rc))%6; int same = ((unsigned)irand(rc))&3; /* 25% chance of using the same post for all of them */ sprintf(ministr,"(%d%s)",b,(same>0) ? " same" : ""); add_to_action(action,"mutate post xforms "); add_to_action(action,ministr); for (i = 0; i < cp->num_xforms; i++) { int copy = (i > 0) && same; if (copy) { /* Copy the post from the first xform to the rest of them */ for (j = 0; j < 3; j++) { cp->xform[i].post[j][0] = cp->xform[0].post[j][0]; cp->xform[i].post[j][1] = cp->xform[0].post[j][1]; } } else { if (b&1) { /* 50% chance */ double f = M_PI * flam3_random_isaac_11(rc); double t[2][2]; t[0][0] = (cp->xform[i].c[0][0] * cos(f) + cp->xform[i].c[0][1] * -sin(f)); t[0][1] = (cp->xform[i].c[0][0] * sin(f) + cp->xform[i].c[0][1] * cos(f)); t[1][0] = (cp->xform[i].c[1][0] * cos(f) + cp->xform[i].c[1][1] * -sin(f)); t[1][1] = (cp->xform[i].c[1][0] * sin(f) + cp->xform[i].c[1][1] * cos(f)); cp->xform[i].c[0][0] = t[0][0]; cp->xform[i].c[0][1] = t[0][1]; cp->xform[i].c[1][0] = t[1][0]; cp->xform[i].c[1][1] = t[1][1]; f *= -1.0; t[0][0] = (cp->xform[i].post[0][0] * cos(f) + cp->xform[i].post[0][1] * -sin(f)); t[0][1] = (cp->xform[i].post[0][0] * sin(f) + cp->xform[i].post[0][1] * cos(f)); t[1][0] = (cp->xform[i].post[1][0] * cos(f) + cp->xform[i].post[1][1] * -sin(f)); t[1][1] = (cp->xform[i].post[1][0] * sin(f) + cp->xform[i].post[1][1] * cos(f)); cp->xform[i].post[0][0] = t[0][0]; cp->xform[i].post[0][1] = t[0][1]; cp->xform[i].post[1][0] = t[1][0]; cp->xform[i].post[1][1] = t[1][1]; } if (b&2) { /* 33% chance */ double f = 0.2 + flam3_random_isaac_01(rc); double g = 0.2 + flam3_random_isaac_01(rc); if (flam3_random_isaac_bit(rc)) f = 1.0 / f; if (flam3_random_isaac_bit(rc)) g = f; else { if (flam3_random_isaac_bit(rc)) g = 1.0 / g; } cp->xform[i].c[0][0] /= f; cp->xform[i].c[0][1] /= f; cp->xform[i].c[1][1] /= g; cp->xform[i].c[1][0] /= g; cp->xform[i].post[0][0] *= f; cp->xform[i].post[1][0] *= f; cp->xform[i].post[0][1] *= g; cp->xform[i].post[1][1] *= g; } if (b&4) { /* 16% chance */ double f = flam3_random_isaac_11(rc); double g = flam3_random_isaac_11(rc); cp->xform[i].c[2][0] -= f; cp->xform[i].c[2][1] -= g; cp->xform[i].post[2][0] += f; cp->xform[i].post[2][1] += g; } } } } else if (mutate_mode == MUTATE_COLOR_PALETTE) { double s = flam3_random_isaac_01(rc); if (s < 0.4) { /* randomize xform color coords */ flam3_improve_colors(cp, 100, 0, 10); add_to_action(action,"mutate color coords"); } else if (s < 0.8) { /* randomize xform color coords and palette */ flam3_improve_colors(cp, 25, 1, 10); add_to_action(action,"mutate color all"); } else { /* randomize palette only */ cp->palette_index = flam3_get_palette(flam3_palette_random, cp->palette, cp->hue_rotation); /* if our palette retrieval fails, skip the mutation */ if (cp->palette_index >= 0) add_to_action(action,"mutate color palette"); else fprintf(stderr,"failure getting random palette, palette set to white\n"); } } else if (mutate_mode == MUTATE_DELETE_XFORM) { int nx = ((unsigned)irand(rc))%cp->num_xforms; sprintf(ministr,"%d",nx); add_to_action(action,"mutate delete xform "); add_to_action(action,ministr); if (cp->num_xforms > 1) flam3_delete_xform(cp,nx); } else { /* MUTATE_ALL_COEFS */ int x; add_to_action(action,"mutate all coefs"); flam3_random(&mutation, ivars, ivars_n, sym, cp->num_xforms); /* change all the coefs by a fraction of the random */ for (x = 0; x < cp->num_xforms; x++) { for (i = 0; i < 3; i++) { for (j = 0; j < 2; j++) { cp->xform[x].c[i][j] += speed * mutation.xform[x].c[i][j]; } } /* Eventually, we can mutate the parametric variation coefs here. */ } } clear_cp(&mutation,flam3_defaults_on); } static int random_var() { return random() % flam3_nvariations; } static int random_varn(int n) { return random() % n; } void flam3_random(flam3_genome *cp, int *ivars, int ivars_n, int sym, int spec_xforms) { int i, j, nxforms, var, samed, multid, samepost, postid, addfinal=0; int finum = -1; int n; char *ai; int f27 = argi("flam27",0); int mvar = f27 ? 54 : flam3_nvariations; double sum; static int xform_distrib[] = { 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6 }; clear_cp(cp,flam3_defaults_on); cp->hue_rotation = (random()&7) ? 0.0 : flam3_random01(); cp->palette_index = flam3_get_palette(flam3_palette_random, cp->palette, cp->hue_rotation); if (cp->palette_index < 0) fprintf(stderr,"error getting palette from xml file, setting to all white\n"); cp->time = 0.0; cp->interpolation = flam3_interpolation_linear; cp->palette_interpolation = flam3_palette_interpolation_hsv; /* Choose the number of xforms */ if (spec_xforms>0) { nxforms = spec_xforms; flam3_add_xforms(cp,nxforms,0,0); } else { nxforms = random_distrib(xform_distrib); flam3_add_xforms(cp,nxforms,0,0); /* Add a final xform 15% of the time */ addfinal = flam3_random01() < 0.15; if (addfinal) { flam3_add_xforms(cp,1,0,1); nxforms = nxforms + addfinal; finum = nxforms-1; } } /* If first input variation is 'flam3_variation_random' */ /* choose one to use or decide to use multiple */ if (flam3_variation_random == ivars[0]) { if (flam3_random_bit()) { var = random_varn(mvar); } else { var = flam3_variation_random; } } else { var = flam3_variation_random_fromspecified; } samed = flam3_random_bit(); multid = flam3_random_bit(); postid = flam3_random01() < 0.6; samepost = flam3_random_bit(); /* Loop over xforms */ for (i = 0; i < nxforms; i++) { int j, k; cp->xform[i].density = 1.0 / nxforms; cp->xform[i].color = i&1; cp->xform[i].color_speed = 0.5; cp->xform[i].animate = 1.0; for (j = 0; j < 3; j++) { for (k = 0; k < 2; k++) { cp->xform[i].c[j][k] = flam3_random11(); cp->xform[i].post[j][k] = (double)(k==j); } } if ( i != finum ) { if (!postid) { for (j = 0; j < 3; j++) for (k = 0; k < 2; k++) { if (samepost || (i==0)) cp->xform[i].post[j][k] = flam3_random11(); else cp->xform[i].post[j][k] = cp->xform[0].post[j][k]; } } /* Clear all variation coefs */ for (j = 0; j < flam3_nvariations; j++) cp->xform[i].var[j] = 0.0; if (flam3_variation_random != var && flam3_variation_random_fromspecified != var) { /* Use only one variation specified for all xforms */ cp->xform[i].var[var] = 1.0; } else if (multid && flam3_variation_random == var) { /* Choose a random var for this xform */ cp->xform[i].var[random_varn(mvar)] = 1.0; } else { if (samed && i > 0) { /* Copy the same variations from the previous xform */ for (j = 0; j < flam3_nvariations; j++) { cp->xform[i].var[j] = cp->xform[i-1].var[j]; flam3_copy_params(&(cp->xform[i]),&(cp->xform[i-1]),j); } } else { /* Choose a random number of vars to use, at least 2 */ /* but less than flam3_nvariations.Probability leans */ /* towards fewer variations. */ n = 2; while ((flam3_random_bit()) && (nxform[i].var[random_varn(mvar)] = flam3_random01(); else cp->xform[i].var[ivars[random_varn(ivars_n)]] = flam3_random01(); } /* Normalize weights to 1.0 total. */ sum = 0.0; for (j = 0; j < flam3_nvariations; j++) sum += cp->xform[i].var[j]; if (sum == 0.0) cp->xform[i].var[random_var()] = 1.0; else { for (j = 0; j < flam3_nvariations; j++) cp->xform[i].var[j] /= sum; } } } } else { /* Handle final xform randomness. */ n = 1; if (flam3_random_bit()) n++; /* Randomly choose n variations, and change their weights. */ /* A var can be selected more than once, further reducing */ /* the probability that multiple vars are used. */ for (j = 0; j < n; j++) { if (flam3_variation_random_fromspecified != var) cp->xform[i].var[random_varn(mvar)] = flam3_random01(); else cp->xform[i].var[ivars[random_varn(ivars_n)]] = flam3_random01(); } /* Normalize weights to 1.0 total. */ sum = 0.0; for (j = 0; j < flam3_nvariations; j++) sum += cp->xform[i].var[j]; if (sum == 0.0) cp->xform[i].var[random_var()] = 1.0; else { for (j = 0; j < flam3_nvariations; j++) cp->xform[i].var[j] /= sum; } } /* Generate random params for parametric variations, if selected. */ if (cp->xform[i].var[VAR_BLOB] > 0) { /* Create random params for blob */ cp->xform[i].blob_low = 0.2 + 0.5 * flam3_random01(); cp->xform[i].blob_high = 0.8 + 0.4 * flam3_random01(); cp->xform[i].blob_waves = (int)(2 + 5 * flam3_random01()); } if (cp->xform[i].var[VAR_PDJ] > 0) { /* Create random params for PDJ */ cp->xform[i].pdj_a = 3.0 * flam3_random11(); cp->xform[i].pdj_b = 3.0 * flam3_random11(); cp->xform[i].pdj_c = 3.0 * flam3_random11(); cp->xform[i].pdj_d = 3.0 * flam3_random11(); } if (cp->xform[i].var[VAR_FAN2] > 0) { /* Create random params for fan2 */ cp->xform[i].fan2_x = flam3_random11(); cp->xform[i].fan2_y = flam3_random11(); } if (cp->xform[i].var[VAR_RINGS2] > 0) { /* Create random params for rings2 */ cp->xform[i].rings2_val = 2*flam3_random01(); } if (cp->xform[i].var[VAR_PERSPECTIVE] > 0) { /* Create random params for perspective */ cp->xform[i].perspective_angle = flam3_random01(); cp->xform[i].perspective_dist = 2*flam3_random01() + 1.0; } if (cp->xform[i].var[VAR_JULIAN] > 0) { /* Create random params for julian */ cp->xform[i].julian_power = (int)(5*flam3_random01() + 2); cp->xform[i].julian_dist = 1.0; } if (cp->xform[i].var[VAR_JULIASCOPE] > 0) { /* Create random params for juliaScope */ cp->xform[i].juliascope_power = (int)(5*flam3_random01() + 2); cp->xform[i].juliascope_dist = 1.0; } if (cp->xform[i].var[VAR_RADIAL_BLUR] > 0) { /* Create random params for radialBlur */ cp->xform[i].radial_blur_angle = (2 * flam3_random01() - 1); } if (cp->xform[i].var[VAR_PIE] > 0) { /* Create random params for pie */ cp->xform[i].pie_slices = (int) 10.0*flam3_random01(); cp->xform[i].pie_thickness = flam3_random01(); cp->xform[i].pie_rotation = 2.0 * M_PI * flam3_random11(); } if (cp->xform[i].var[VAR_NGON] > 0) { /* Create random params for ngon */ cp->xform[i].ngon_sides = (int) flam3_random01()* 10 + 3; cp->xform[i].ngon_power = 3*flam3_random01() + 1; cp->xform[i].ngon_circle = 3*flam3_random01(); cp->xform[i].ngon_corners = 2*flam3_random01()*cp->xform[i].ngon_circle; } if (cp->xform[i].var[VAR_CURL] > 0) { /* Create random params for curl */ cp->xform[i].curl_c1 = flam3_random01(); cp->xform[i].curl_c2 = flam3_random01(); } if (cp->xform[i].var[VAR_RECTANGLES] > 0) { /* Create random params for rectangles */ cp->xform[i].rectangles_x = flam3_random01(); cp->xform[i].rectangles_y = flam3_random01(); } if (cp->xform[i].var[VAR_DISC2] > 0) { /* Create random params for disc2 */ cp->xform[i].disc2_rot = 0.5 * flam3_random01(); cp->xform[i].disc2_twist = 0.5 * flam3_random01(); } if (cp->xform[i].var[VAR_SUPER_SHAPE] > 0) { /* Create random params for supershape */ cp->xform[i].super_shape_rnd = flam3_random01(); cp->xform[i].super_shape_m = (int) flam3_random01()*6; cp->xform[i].super_shape_n1 = flam3_random01()*40; cp->xform[i].super_shape_n2 = flam3_random01()*20; cp->xform[i].super_shape_n3 = cp->xform[i].super_shape_n2; cp->xform[i].super_shape_holes = 0.0; } if (cp->xform[i].var[VAR_FLOWER] > 0) { /* Create random params for flower */ cp->xform[i].flower_petals = 4 * flam3_random01(); cp->xform[i].flower_holes = flam3_random01(); } if (cp->xform[i].var[VAR_CONIC] > 0) { /* Create random params for conic */ cp->xform[i].conic_eccentricity = flam3_random01(); cp->xform[i].conic_holes = flam3_random01(); } if (cp->xform[i].var[VAR_PARABOLA] > 0) { /* Create random params for parabola */ cp->xform[i].parabola_height = 0.5 + flam3_random01(); cp->xform[i].parabola_width = 0.5 + flam3_random01(); } if (cp->xform[i].var[VAR_BENT2] > 0) { /* Create random params for bent2 */ cp->xform[i].bent2_x = 3*(-0.5 + flam3_random01()); cp->xform[i].bent2_y = 3*(-0.5 + flam3_random01()); } if (cp->xform[i].var[VAR_BIPOLAR] > 0) { /* Create random params for bipolar */ cp->xform[i].bipolar_shift = 2.0 * flam3_random01() - 1; } if (cp->xform[i].var[VAR_CELL] > 0) { /* Create random params for cell */ cp->xform[i].cell_size = 2.0 * flam3_random01() + 0.5; } if (cp->xform[i].var[VAR_CPOW] > 0) { /* Create random params for cpow */ cp->xform[i].cpow_r = 3.0 * flam3_random01(); cp->xform[i].cpow_i = flam3_random01() - 0.5; cp->xform[i].cpow_power = (int)(5.0 * flam3_random01()); } if (cp->xform[i].var[VAR_CURVE] > 0) { /* Create random params for curve */ cp->xform[i].curve_xamp = 5 * (flam3_random01()-.5); cp->xform[i].curve_yamp = 4 * (flam3_random01()-.5); cp->xform[i].curve_xlength = 2 * (flam3_random01()+.5); cp->xform[i].curve_ylength = 2 * (flam3_random01()+.5); } if (cp->xform[i].var[VAR_ESCHER] > 0) { /* Create random params for escher */ cp->xform[i].escher_beta = M_PI * flam3_random11(); } if (cp->xform[i].var[VAR_LAZYSUSAN] > 0) { /* Create random params for lazysusan */ cp->xform[i].lazysusan_x = 2.0*flam3_random11(); cp->xform[i].lazysusan_y = 2.0*flam3_random11(); cp->xform[i].lazysusan_spin = M_PI*flam3_random11(); cp->xform[i].lazysusan_space = 2.0*flam3_random11(); cp->xform[i].lazysusan_twist = 2.0*flam3_random11(); } if (cp->xform[i].var[VAR_MODULUS] > 0) { /* Create random params for modulus */ cp->xform[i].modulus_x = flam3_random11(); cp->xform[i].modulus_y = flam3_random11(); } if (cp->xform[i].var[VAR_OSCILLOSCOPE] > 0) { /* Create random params for oscope */ cp->xform[i].oscope_separation = 1.0 + flam3_random11(); cp->xform[i].oscope_frequency = M_PI * flam3_random11(); cp->xform[i].oscope_amplitude = 1.0 + 2 * flam3_random01(); cp->xform[i].oscope_damping = flam3_random01(); } if (cp->xform[i].var[VAR_POPCORN2] > 0) { /* Create random params for popcorn2 */ cp->xform[i].popcorn2_x = 0.2 * flam3_random01(); cp->xform[i].popcorn2_y = 0.2 * flam3_random01(); cp->xform[i].popcorn2_c = 5 * flam3_random01(); } if (cp->xform[i].var[VAR_SEPARATION] > 0) { /* Create random params for separation */ cp->xform[i].separation_x = 1 + flam3_random11(); cp->xform[i].separation_y = 1 + flam3_random11(); cp->xform[i].separation_xinside = flam3_random11(); cp->xform[i].separation_yinside = flam3_random11(); } if (cp->xform[i].var[VAR_SPLIT] > 0) { /* Create random params for split */ cp->xform[i].split_xsize = flam3_random11(); cp->xform[i].split_ysize = flam3_random11(); } if (cp->xform[i].var[VAR_SPLITS] > 0) { /* Create random params for splits */ cp->xform[i].splits_x = flam3_random11(); cp->xform[i].splits_y = flam3_random11(); } if (cp->xform[i].var[VAR_STRIPES] > 0) { /* Create random params for stripes */ cp->xform[i].stripes_space = flam3_random01(); cp->xform[i].stripes_warp = 5*flam3_random01(); } if (cp->xform[i].var[VAR_WEDGE] > 0) { /* Create random params for wedge */ cp->xform[i].wedge_angle = M_PI*flam3_random01(); cp->xform[i].wedge_hole = 0.5*flam3_random11(); cp->xform[i].wedge_count = floor(5*flam3_random01())+1; cp->xform[i].wedge_swirl = flam3_random01(); } if (cp->xform[i].var[VAR_WEDGE_JULIA] > 0) { /* Create random params for wedge_julia */ cp->xform[i].wedge_julia_power = (int)(5*flam3_random01() + 2); cp->xform[i].wedge_julia_dist = 1.0; cp->xform[i].wedge_julia_count = (int)(3*flam3_random01() + 1); cp->xform[i].wedge_julia_angle = M_PI * flam3_random01(); } if (cp->xform[i].var[VAR_WEDGE_SPH] > 0) { /* Create random params for wedge_sph */ cp->xform[i].wedge_sph_angle = M_PI*flam3_random01(); cp->xform[i].wedge_sph_hole = 0.5*flam3_random11(); cp->xform[i].wedge_sph_count = floor(5*flam3_random01())+1; cp->xform[i].wedge_sph_swirl = flam3_random01(); } if (cp->xform[i].var[VAR_WHORL] > 0) { /* Create random params for whorl */ cp->xform[i].whorl_inside = flam3_random01(); cp->xform[i].whorl_outside = flam3_random01(); } if (cp->xform[i].var[VAR_WAVES2] > 0) { /* Create random params for waves2 */ cp->xform[i].waves2_scalex = 0.5 + flam3_random01(); cp->xform[i].waves2_scaley = 0.5 + flam3_random01(); cp->xform[i].waves2_freqx = 4 * flam3_random01(); cp->xform[i].waves2_freqy = 4 * flam3_random01(); } if (cp->xform[i].var[VAR_AUGER] > 0) { /* Create random params for auger */ cp->xform[i].auger_sym = 0; cp->xform[i].auger_weight = 0.5 + flam3_random01()/2.0; cp->xform[i].auger_freq = floor(5*flam3_random01())+1; cp->xform[i].auger_scale = flam3_random01(); } if (cp->xform[i].var[VAR_FLUX] > 0) { /* Create random params for flux */ cp->xform[i].flux_spread = 0.5 + flam3_random01()/2.0; } if (cp->xform[i].var[VAR_MOBIUS] > 0) { /* Create random params for mobius */ cp->xform[i].mobius_re_a = flam3_random11(); cp->xform[i].mobius_im_a = flam3_random11(); cp->xform[i].mobius_re_b = flam3_random11(); cp->xform[i].mobius_im_b = flam3_random11(); cp->xform[i].mobius_re_c = flam3_random11(); cp->xform[i].mobius_im_c = flam3_random11(); cp->xform[i].mobius_re_d = flam3_random11(); cp->xform[i].mobius_im_d = flam3_random11(); } } /* Randomly add symmetry (but not if we've already added a final xform) */ if (sym || (!(random()%4) && !addfinal)) flam3_add_symmetry(cp, sym); else cp->symmetry = 0; //qsort((char *) cp->xform, (cp->num_xforms-addfinal), sizeof(flam3_xform), compare_xforms); } static int sort_by_x(const void *av, const void *bv) { double *a = (double *) av; double *b = (double *) bv; if (a[0] < b[0]) return -1; if (a[0] > b[0]) return 1; return 0; } static int sort_by_y(const void *av, const void *bv) { double *a = (double *) av; double *b = (double *) bv; if (a[1] < b[1]) return -1; if (a[1] > b[1]) return 1; return 0; } /* Memory helper functions because Python on Windows uses the MSVCR71.dll version of the C Runtime and mingw uses the MSVCRT.dll version. */ void *flam3_malloc(size_t size) { return (malloc(size)); } void flam3_free(void *ptr) { free(ptr); } /* * find a 2d bounding box that does not enclose eps of the fractal density * in each compass direction. */ int flam3_estimate_bounding_box(flam3_genome *cp, double eps, int nsamples, double *bmin, double *bmax, randctx *rc) { int i; int low_target, high_target; double min[2], max[2]; double *points; int bv; unsigned short *xform_distrib; if (nsamples <= 0) nsamples = 10000; points = (double *) malloc(sizeof(double) * 4 * nsamples); points[0] = flam3_random_isaac_11(rc); points[1] = flam3_random_isaac_11(rc); points[2] = 0.0; points[3] = 0.0; if (prepare_precalc_flags(cp)) return(-1); xform_distrib = flam3_create_xform_distrib(cp); if (xform_distrib==NULL) return(-1); bv=flam3_iterate(cp, nsamples, 20, points, xform_distrib, rc); free(xform_distrib); if ( bv/(double)nsamples > eps ) eps = 3*bv/(double)nsamples; if ( eps > 0.3 ) eps = 0.3; low_target = (int)(nsamples * eps); high_target = nsamples - low_target; min[0] = min[1] = 1e10; max[0] = max[1] = -1e10; for (i = 0; i < nsamples; i++) { double *p = &points[4*i]; if (p[0] < min[0]) min[0] = p[0]; if (p[1] < min[1]) min[1] = p[1]; if (p[0] > max[0]) max[0] = p[0]; if (p[1] > max[1]) max[1] = p[1]; } if (low_target == 0) { bmin[0] = min[0]; bmin[1] = min[1]; bmax[0] = max[0]; bmax[1] = max[1]; free(points); return(bv); } qsort(points, nsamples, sizeof(double) * 4, sort_by_x); bmin[0] = points[4 * low_target]; bmax[0] = points[4 * high_target]; qsort(points, nsamples, sizeof(double) * 4, sort_by_y); bmin[1] = points[4 * low_target + 1]; bmax[1] = points[4 * high_target + 1]; free(points); return(bv); } typedef double bucket_double[5]; typedef double abucket_double[4]; typedef unsigned int bucket_int[5]; typedef unsigned int abucket_int[4]; typedef float bucket_float[5]; typedef float abucket_float[4]; #ifdef HAVE_GCC_64BIT_ATOMIC_OPS static inline void double_atomic_add(double *dest, double delta) { uint64_t *int_ptr = (uint64_t *)dest; union { double dblval; uint64_t intval; } old_val, new_val; int success; do { old_val.dblval = *dest; new_val.dblval = old_val.dblval + delta; success = __sync_bool_compare_and_swap( int_ptr, old_val.intval, new_val.intval); } while (!success); } #endif /* HAVE_GCC_64BIT_ATOMIC_OPS */ #ifdef HAVE_GCC_ATOMIC_OPS static inline void float_atomic_add(float *dest, float delta) { uint32_t *int_ptr = (uint32_t *)dest; union { float fltval; uint32_t intval; } old_val, new_val; int success; do { old_val.fltval = *dest; new_val.fltval = old_val.fltval + delta; success = __sync_bool_compare_and_swap( int_ptr, old_val.intval, new_val.intval); } while (!success); } static inline void uint_atomic_add(unsigned int *dest, unsigned int delta) { unsigned int old_val, new_val; int success; do { old_val = *dest; if (UINT_MAX - old_val > delta) new_val = old_val + delta; else new_val = UINT_MAX; success = __sync_bool_compare_and_swap( dest, old_val, new_val); } while (!success); } static inline void ushort_atomic_add(unsigned short *dest, unsigned short delta) { unsigned short old_val, new_val; int success; do { old_val = *dest; if (USHRT_MAX - old_val > delta) new_val = old_val + delta; else new_val = USHRT_MAX; success = __sync_bool_compare_and_swap( dest, old_val, new_val); } while (!success); } #endif /* HAVE_GCC_ATOMIC_OPS */ /* 64-bit datatypes */ #define bucket bucket_double #define abucket abucket_double #define abump_no_overflow(dest, delta) do {dest += delta;} while (0) #define add_c_to_accum(acc,i,ii,j,jj,wid,hgt,c) do { \ if ( (j) + (jj) >=0 && (j) + (jj) < (hgt) && (i) + (ii) >=0 && (i) + (ii) < (wid)) { \ abucket *a = (acc) + ( (i) + (ii) ) + ( (j) + (jj) ) * (wid); \ abump_no_overflow(a[0][0],(c)[0]); \ abump_no_overflow(a[0][1],(c)[1]); \ abump_no_overflow(a[0][2],(c)[2]); \ abump_no_overflow(a[0][3],(c)[3]); \ } \ } while (0) /* single-threaded */ #define USE_LOCKS #define bump_no_overflow(dest, delta) do {dest += delta;} while (0) #define render_rectangle render_rectangle_double #define iter_thread iter_thread_double #define de_thread_helper de_thread_helper_64 #define de_thread de_thread_64 #include "rect.c" #ifdef HAVE_GCC_64BIT_ATOMIC_OPS /* multi-threaded */ #undef USE_LOCKS #undef bump_no_overflow #undef render_rectangle #undef iter_thread #undef de_thread_helper #undef de_thread #define bump_no_overflow(dest, delta) double_atomic_add(&dest, delta) #define render_rectangle render_rectangle_double_mt #define iter_thread iter_thread_double_mt #define de_thread_helper de_thread_helper_64_mt #define de_thread de_thread_64_mt #include "rect.c" #else /* !HAVE_GCC_64BIT_ATOMIC_OPS */ #define render_rectangle_double_mt render_rectangle_double #endif /* HAVE_GCC_64BIT_ATOMIC_OPS */ #undef render_rectangle #undef iter_thread #undef add_c_to_accum #undef bucket #undef abucket #undef bump_no_overflow #undef abump_no_overflow #undef de_thread_helper #undef de_thread /* 32-bit datatypes */ #define bucket bucket_int #define abucket abucket_int #define abump_no_overflow(dest, delta) do { \ if (UINT_MAX - dest > delta) dest += delta; else dest = UINT_MAX; \ } while (0) #define add_c_to_accum(acc,i,ii,j,jj,wid,hgt,c) do { \ if ( (j) + (jj) >=0 && (j) + (jj) < (hgt) && (i) + (ii) >=0 && (i) + (ii) < (wid)) { \ abucket *a = (acc) + ( (i) + (ii) ) + ( (j) + (jj) ) * (wid); \ abump_no_overflow(a[0][0],(c)[0]); \ abump_no_overflow(a[0][1],(c)[1]); \ abump_no_overflow(a[0][2],(c)[2]); \ abump_no_overflow(a[0][3],(c)[3]); \ } \ } while (0) /* single-threaded */ #define USE_LOCKS #define bump_no_overflow(dest, delta) do { \ if (UINT_MAX - dest > delta) dest += delta; else dest = UINT_MAX; \ } while (0) #define render_rectangle render_rectangle_int #define iter_thread iter_thread_int #define de_thread_helper de_thread_helper_32 #define de_thread de_thread_32 #include "rect.c" #ifdef HAVE_GCC_ATOMIC_OPS /* multi-threaded */ #undef USE_LOCKS #undef bump_no_overflow #undef render_rectangle #undef iter_thread #undef de_thread_helper #undef de_thread #define bump_no_overflow(dest, delta) uint_atomic_add(&dest, delta) #define render_rectangle render_rectangle_int_mt #define iter_thread iter_thread_int_mt #define de_thread_helper de_thread_helper_32_mt #define de_thread de_thread_32_mt #include "rect.c" #else /* !HAVE_GCC_ATOMIC_OPS */ #define render_rectangle_int_mt render_rectangle_int #endif /* HAVE_GCC_ATOMIC_OPS */ #undef iter_thread #undef render_rectangle #undef add_c_to_accum #undef bucket #undef abucket #undef bump_no_overflow #undef abump_no_overflow #undef de_thread_helper #undef de_thread /* experimental 32-bit datatypes (called 33) */ #define bucket bucket_int #define abucket abucket_float #define abump_no_overflow(dest, delta) do {dest += delta;} while (0) #define add_c_to_accum(acc,i,ii,j,jj,wid,hgt,c) do { \ if ( (j) + (jj) >=0 && (j) + (jj) < (hgt) && (i) + (ii) >=0 && (i) + (ii) < (wid)) { \ abucket *a = (acc) + ( (i) + (ii) ) + ( (j) + (jj) ) * (wid); \ abump_no_overflow(a[0][0],(c)[0]); \ abump_no_overflow(a[0][1],(c)[1]); \ abump_no_overflow(a[0][2],(c)[2]); \ abump_no_overflow(a[0][3],(c)[3]); \ } \ } while (0) /* single-threaded */ #define USE_LOCKS #define bump_no_overflow(dest, delta) do { \ if (UINT_MAX - dest > delta) dest += delta; else dest = UINT_MAX; \ } while (0) #define render_rectangle render_rectangle_float #define iter_thread iter_thread_float #define de_thread_helper de_thread_helper_33 #define de_thread de_thread_33 #include "rect.c" #ifdef HAVE_GCC_ATOMIC_OPS /* multi-threaded */ #undef USE_LOCKS #undef bump_no_overflow #undef render_rectangle #undef iter_thread #undef de_thread_helper #undef de_thread #define bump_no_overflow(dest, delta) uint_atomic_add(&dest, delta) #define render_rectangle render_rectangle_float_mt #define iter_thread iter_thread_float_mt #define de_thread_helper de_thread_helper_33_mt #define de_thread de_thread_33_mt #include "rect.c" #else /* !HAVE_GCC_ATOMIC_OPS */ #define render_rectangle_float_mt render_rectangle_float #endif /* HAVE_GCC_ATOMIC_OPS */ #undef iter_thread #undef render_rectangle #undef add_c_to_accum #undef bucket #undef abucket #undef bump_no_overflow #undef abump_no_overflow #undef de_thread_helper #undef de_thread double flam3_render_memory_required(flam3_frame *spec) { flam3_genome *cps = spec->genomes; int real_bits = spec->bits; int real_bytes; if (33 == real_bits) real_bits = 32; real_bytes = real_bits / 8; return (double) cps[0].spatial_oversample * cps[0].spatial_oversample * (double) cps[0].width * cps[0].height * real_bytes * 9.0; } void bits_error(flam3_frame *spec) { fprintf(stderr, "flam3: bits must be 32, 33, or 64 not %d.\n", spec->bits); } int flam3_render(flam3_frame *spec, void *out, int field, int nchan, int trans, stat_struct *stats) { int retval; if (spec->nthreads <= 2) { /* single-threaded or 2 threads without atomic operations */ switch (spec->bits) { case 32: retval = render_rectangle_int(spec, out, field, nchan, trans, stats); return(retval); case 33: retval = render_rectangle_float(spec, out, field, nchan, trans, stats); return(retval); case 64: retval = render_rectangle_double(spec, out, field, nchan, trans, stats); return(retval); default: bits_error(spec); return(1); } } else { /* 3+ threads using atomic ops if available */ switch (spec->bits) { case 32: retval = render_rectangle_int_mt(spec, out, field, nchan, trans, stats); return(retval); case 33: retval = render_rectangle_float_mt(spec, out, field, nchan, trans, stats); return(retval); case 64: retval = render_rectangle_double_mt(spec, out, field, nchan, trans, stats); return(retval); default: bits_error(spec); return(1); } } } void flam3_srandom() { unsigned int seed; char *s = getenv("seed"); if (s) seed = atoi(s); else seed = time(0) + getpid(); srandom(seed); } /* correlation dimension, after clint sprott. computes slope of the correlation sum at a size scale the order of 2% the size of the attractor or the camera. */ double flam3_dimension(flam3_genome *cp, int ntries, int clip_to_camera) { double fd; double *hist; double bmin[2]; double bmax[2]; double d2max; int lp; long int default_isaac_seed = (long int)time(0); randctx rc; int SBS = 10000; int i, n1=0, n2=0, got, nclipped; /* Set up the isaac rng */ for (lp = 0; lp < RANDSIZ; lp++) rc.randrsl[lp] = default_isaac_seed; irandinit(&rc,1); if (ntries < 2) ntries = 3000*1000; if (clip_to_camera) { double scale, ppux, corner0, corner1; scale = pow(2.0, cp->zoom); ppux = cp->pixels_per_unit * scale; corner0 = cp->center[0] - cp->width / ppux / 2.0; corner1 = cp->center[1] - cp->height / ppux / 2.0; bmin[0] = corner0; bmin[1] = corner1; bmax[0] = corner0 + cp->width / ppux; bmax[1] = corner1 + cp->height / ppux; } else { if (flam3_estimate_bounding_box(cp, 0.0, 0, bmin, bmax, &rc)<0) return(-1.0); } d2max = (bmax[0] - bmin[0]) * (bmax[0] - bmin[0]) + (bmax[1] - bmin[1]) * (bmax[1] - bmin[1]); // fprintf(stderr, "d2max=%g %g %g %g %g\n", d2max, // bmin[0], bmin[1], bmax[0], bmax[1]); hist = malloc(2 * ntries * sizeof(double)); got = 0; nclipped = 0; while (got < 2*ntries) { double subb[40000]; int i4, clipped; unsigned short *xform_distrib; subb[0] = flam3_random_isaac_11(&rc); subb[1] = flam3_random_isaac_11(&rc); subb[2] = 0.0; subb[3] = 0.0; if (prepare_precalc_flags(cp)) return(-1.0); xform_distrib = flam3_create_xform_distrib(cp); if (xform_distrib==NULL) return(-1.0); flam3_iterate(cp, SBS, 20, subb, xform_distrib, &rc); free(xform_distrib); i4 = 0; for (i = 0; i < SBS; i++) { if (got == 2*ntries) break; clipped = clip_to_camera && ((subb[i4] < bmin[0]) || (subb[i4+1] < bmin[1]) || (subb[i4] > bmax[0]) || (subb[i4+1] > bmax[1])); if (!clipped) { hist[got] = subb[i4]; hist[got+1] = subb[i4+1]; got += 2; } else { nclipped++; if (nclipped > 10 * ntries) { fprintf(stderr, "warning: too much clipping, " "flam3_dimension giving up.\n"); return sqrt(-1.0); } } i4 += 4; } } if (0) fprintf(stderr, "cliprate=%g\n", nclipped/(ntries+(double)nclipped)); for (i = 0; i < ntries; i++) { int ri; double dx, dy, d2; double tx, ty; tx = hist[2*i]; ty = hist[2*i+1]; do { ri = 2 * (random() % ntries); } while (ri == i); dx = hist[ri] - tx; dy = hist[ri+1] - ty; d2 = dx*dx + dy*dy; if (d2 < 0.004 * d2max) n2++; if (d2 < 0.00004 * d2max) n1++; } fd = 0.434294 * log(n2 / (n1 - 0.5)); if (0) fprintf(stderr, "n1=%d n2=%d\n", n1, n2); free(hist); return fd; } double flam3_lyapunov(flam3_genome *cp, int ntries) { double p[4]; double x, y; double xn, yn; double xn2, yn2; double dx, dy, r; double eps = 1e-5; int i; double sum = 0.0; unsigned short *xform_distrib; int lp; long int default_isaac_seed = (long int)time(0); randctx rc; /* Set up the isaac rng */ for (lp = 0; lp < RANDSIZ; lp++) rc.randrsl[lp] = default_isaac_seed; irandinit(&rc,1); if (ntries < 1) ntries = 10000; for (i = 0; i < ntries; i++) { x = flam3_random_isaac_11(&rc); y = flam3_random_isaac_11(&rc); p[0] = x; p[1] = y; p[2] = 0.0; p[3] = 0.0; // get into the attractor if (prepare_precalc_flags(cp)) return(-1.0); xform_distrib = flam3_create_xform_distrib(cp); if (xform_distrib==NULL) return(-1.0); flam3_iterate(cp, 1, 20+(random()%10), p, xform_distrib, &rc); free(xform_distrib); x = p[0]; y = p[1]; // take one deterministic step srandom(i); if (prepare_precalc_flags(cp)) return(-1.0); xform_distrib = flam3_create_xform_distrib(cp); if (xform_distrib==NULL) return(-1.0); flam3_iterate(cp, 1, 0, p, xform_distrib, &rc); free(xform_distrib); xn = p[0]; yn = p[1]; do { dx = flam3_random_isaac_11(&rc); dy = flam3_random_isaac_11(&rc); r = sqrt(dx * dx + dy * dy); } while (r == 0.0); dx /= r; dy /= r; dx *= eps; dy *= eps; p[0] = x + dx; p[1] = y + dy; p[2] = 0.0; // take the same step but with eps srandom(i); if (prepare_precalc_flags(cp)) return(-1.0); xform_distrib = flam3_create_xform_distrib(cp); if (xform_distrib==NULL) return(-1.0); flam3_iterate(cp, 1, 0, p, xform_distrib, &rc); free(xform_distrib); xn2 = p[0]; yn2 = p[1]; r = sqrt((xn-xn2)*(xn-xn2) + (yn-yn2)*(yn-yn2)); sum += log(r/eps); } return sum/(log(2.0)*ntries); }