/* Copyright (C) 1992-2009 Spotworks LLC Copyright (C) 2015 pucket contributors This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #pragma once #include #include #include "build/config.h" #include "vector.h" #ifdef HAVE_AMDLIBM #define REPLACE_WITH_AMDLIBM #include #undef nearbyint #undef floor #endif #define clamp(a,min,max) (a > max ? max : (a < min ? min : a)) #define EPS (1e-10) /* Apply affine coordinate transformation */ inline double2 apply_affine (const double2 in, const double2 matrix[3]) { return matrix[0] * in[0] + matrix[1] * in[1] + matrix[2]; } /* Create affine rotation matrix, angle in degree */ inline void rotate (const double angle, double2 matrix[3]) { double s, c; sincos (angle * 2.0 * M_PI / 360.0, &s, &c); matrix[0] = (double2) { c, s }; matrix[1] = (double2) { -s, c }; matrix[2] = (double2) { 0.0, 0.0 }; } /* Create affine translation matrix */ inline void translate (const double2 xy, double2 matrix[3]) { matrix[0] = (double2) { 1.0, 0.0 }; matrix[1] = (double2) { 0.0, 1.0 }; matrix[2] = xy; } /* Create affine scaling matrix */ inline void scale (const double2 xy, double2 matrix[3]) { matrix[0] = (double2) { xy[0], 0.0 }; matrix[1] = (double2) { 0.0, xy[1] }; matrix[2] = (double2) { 0.0, 0.0 }; } /* Multiply two affine matrices a, b and store the result in c. * * The last row of each matrix is assumed to be 0, 0, 1. */ inline void matrixmul (const double2 a[3], const double2 b[3], double2 c[3]) { c[0] = a[0] * b[0][0] + a[1] * b[0][1]; c[1] = a[0] * b[1][0] + a[1] * b[1][1]; c[2] = a[0] * b[2][0] + a[1] * b[2][1] + a[2]; } /* Affine matrix that transforms rect from (x1, y1, x2, y2) into rect to */ inline void translate_rect (const double4 from, const double4 to, double2 matrix[3]) { const double2 from_edge = (double2) { from[0], from[1] }, to_edge = (double2) { to[0], to[1] }; /* first align one of A and B’s edges */ double2 translate_edge[3]; translate (to_edge - from_edge, translate_edge); /* then scale it up or down */ double2 scale_rect[3]; scale ((double2) { (to[2] - to[0])/(from[2] - from[0]), (to[3] - to[1])/(from[3] - from[1])}, scale_rect); /* the result is scale*translate (i.e. translate first) */ matrixmul (scale_rect, translate_edge, matrix); } /* Create rotation around center. Note that matrix multiplication is * right-associative, thus A*B*C == A*(B*C) */ inline void rotate_center (const double2 center, const double angle, double2 out[3]) { double2 rot[3], trans_a[3], trans_b[3], tmp[3]; translate (-1.0 * center, trans_a); rotate (angle, rot); translate (center, trans_b); matrixmul (rot, trans_a, tmp); matrixmul (trans_b, tmp, out); } inline double sum(const double2 in) { return in[0] + in[1]; } inline void normalize (double * const a, const size_t n) { double sum = 0.0; for (unsigned int j = 0; j < n; j++) { sum += a[j]; } assert (sum > 0.0); for (unsigned int j = 0; j < n; j++) { a[j] /= sum; } } #define max(a,b) ((a) > (b) ? (a) : (b)) /* Vector wrapping function, could be replaced by true vector functions later */ inline double4 clamp_d4 (const double4 in, const double min, const double max) { return (double4) { clamp (in[0], min, max), clamp (in[1], min, max), clamp (in[2], min, max), clamp (in[3], min, max), }; } inline double4 pow_d4 (const double4 in, double exp) { return (double4) { pow (in[0], exp), pow (in[1], exp), pow (in[2], exp), pow (in[3], exp), }; } inline double4 nearbyint_d4 (const double4 in) { return (double4) { nearbyint (in[0]), nearbyint (in[1]), nearbyint (in[2]), nearbyint (in[3]), }; }