summaryrefslogtreecommitdiff
path: root/rect.c
blob: ed68f724aa7003951e0082d620631e236310e47c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
/*
    FLAM3 - cosmic recursive fractal flames
    Copyright (C) 1992-2009 Spotworks LLC

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <assert.h>
#include <stdlib.h>

#include "private.h"
#include "filters.h"
#include "variations.h"
#include "palettes.h"
#include "math.h"

/*
 * for batch
 *   generate de filters
 *   for temporal_sample_batch
 *     interpolate
 *     compute colormap
 *     for subbatch
 *       compute samples
 *       buckets += cmap[samples]
 *   accum += time_filter[temporal_sample_batch] * log[buckets] * de_filter
 * image = filter(accum)
 */

/* allow this many iterations for settling into attractor */
#define FUSE_27 15
#define FUSE_28 100

/*	Lookup color [0,1]
 */
static double4 color_palette_lookup (const double color,
		const color_palette_mode mode, const flam3_palette map,
		const unsigned int map_count) {
	assert (color >= 0.0 && color <= 1.0);

	switch (mode) {
		case PALETTE_MODE_LINEAR: {
			const double ix = color * map_count;
			const double bottomix = floor (ix);
			const double frac = ix - bottomix;
			const unsigned int intix = bottomix;

			if (intix == map_count-1) {
				return map[intix].color;
			} else {
				return map[intix].color * (1.0-frac) +
					map[intix+1].color * frac;
			}
			break;
		}

		case PALETTE_MODE_STEP: {
			const unsigned int intix = nearbyint (color * map_count);
			return map[intix].color;
			break;
		}

		default:
			assert (0);
			break;
	}
}

static void *iter_thread(void *fth) {
   double sub_batch;
   int j;
   flam3_thread_helper *fthp = (flam3_thread_helper *)fth;
   flam3_iter_constants *ficp = fthp->fic;
   struct timespec pauset;
   int SBS = ficp->spec->sub_batch_size;
   int fuse;
   int cmap_size = ficp->cmap_size;
   double eta = 0.0;
   double4 *iter_storage;
   randctx rc;

   rand_seed (&rc);

   int ret = posix_memalign ((void **) &iter_storage, sizeof (*iter_storage),
		   SBS * sizeof (*iter_storage));
   assert (ret == 0);
   assert (iter_storage != NULL);  

   fuse = (ficp->spec->earlyclip) ? FUSE_28 : FUSE_27;

   pauset.tv_sec = 0;
   pauset.tv_nsec = 100000000;


   if (fthp->timer_initialize) {
   	*(ficp->progress_timer) = 0;
   	memset(ficp->progress_timer_history,0,64*sizeof(time_t));
   	memset(ficp->progress_history,0,64*sizeof(double));
   	*(ficp->progress_history_mark) = 0;
   }
   
   for (sub_batch = 0; sub_batch < ficp->batch_size; sub_batch+=SBS) {
      int sub_batch_size, badcount;
      time_t newt = time(NULL);
      /* sub_batch is double so this is sketchy */
      sub_batch_size = (sub_batch + SBS > ficp->batch_size) ?
                           (ficp->batch_size - sub_batch) : SBS;
                           
      if (fthp->first_thread && newt != *(ficp->progress_timer)) {
         double percent = 100.0 *
             ((((sub_batch / (double) ficp->batch_size) + ficp->temporal_sample_num)
             / ficp->ntemporal_samples) + ficp->batch_num)/ficp->nbatches;
         int old_mark = 0;
         int ticker;

         if (ficp->spec->verbose)
            fprintf(stderr, "\rchaos: %5.1f%%", percent);
            
         *(ficp->progress_timer) = newt;
         if (ficp->progress_timer_history[*(ficp->progress_history_mark)] &&
                ficp->progress_history[*(ficp->progress_history_mark)] < percent)
            old_mark = *(ficp->progress_history_mark);

         if (percent > 0) {
            eta = (100 - percent) * (*(ficp->progress_timer) - ficp->progress_timer_history[old_mark])
                  / (percent - ficp->progress_history[old_mark]);

            if (ficp->spec->verbose) {
               ticker = (*(ficp->progress_timer)&1)?':':'.';
               if (eta < 1000)
                  ticker = ':';
               if (eta > 100)
                  fprintf(stderr, "  ETA%c %.1f minutes", ticker, eta / 60);
               else
                  fprintf(stderr, "  ETA%c %ld seconds ", ticker, (long) ceil(eta));
               fprintf(stderr, "              \r");
               fflush(stderr);
            }
         }

         ficp->progress_timer_history[*(ficp->progress_history_mark)] = *(ficp->progress_timer);
         ficp->progress_history[*(ficp->progress_history_mark)] = percent;
         *(ficp->progress_history_mark) = (*(ficp->progress_history_mark) + 1) % 64;
      }

      /* Custom progress function */
      if (ficp->spec->progress) {
         if (fthp->first_thread) {
         
            int rv;
         
            /* Recalculate % done, as the other calculation only updates once per second */
            double percent = 100.0 *
                ((((sub_batch / (double) ficp->batch_size) + ficp->temporal_sample_num)
                / ficp->ntemporal_samples) + ficp->batch_num)/ficp->nbatches;
                
            rv = (*ficp->spec->progress)(ficp->spec->progress_parameter, percent, 0, eta);
            
            if (rv==2) { /* PAUSE */
               
               time_t tnow = time(NULL);
               time_t tend;
               int lastpt;
               
               ficp->aborted = -1;
               
               do {
				   nanosleep(&pauset,NULL);
                  rv = (*ficp->spec->progress)(ficp->spec->progress_parameter, percent, 0, eta);
               } while (rv==2);
               
               /* modify the timer history to compensate for the pause */
               tend = time(NULL)-tnow;
               
               ficp->aborted = 0;

               for (lastpt=0;lastpt<64;lastpt++) {
                  if (ficp->progress_timer_history[lastpt]) {
                      ficp->progress_timer_history[lastpt] += tend;
                  }
               }
               
            }
                  
            if (rv==1) { /* ABORT */
				   ficp->aborted = 1;
               goto done;
            }
         } else {
            if (ficp->aborted<0) {

            do {
               nanosleep(&pauset,NULL);
            } while (ficp->aborted==-1);
            }
            if (ficp->aborted>0) goto done;
         }
      }

      /* Seed iterations */
      const double4 start = (double4) {
	                        rand_d11(&rc),
                            rand_d11(&rc),
                            rand_d01(&rc),
                            rand_d01(&rc),
							};

      /* Execute iterations */
      badcount = flam3_iterate(&(fthp->cp), sub_batch_size, fuse, start, iter_storage, ficp->xform_distrib, &rc);

      /* Lock mutex for access to accumulator */
      pthread_mutex_lock(&ficp->bucket_mutex);

      /* Add the badcount to the counter */
      ficp->badvals += badcount;

      /* Put them in the bucket accumulator */
      for (j = 0; j < sub_batch_size; j++) {
         double4 p = iter_storage[j];

         if (fthp->cp.rotate != 0.0) {
		 	const double2 p01 = (double2) { p[0], p[1] };
		 	const double2 rotatedp = apply_affine (p01, ficp->rot);
		 	p[0] = rotatedp[0];
		 	p[1] = rotatedp[1];
         }

		 /* Skip if out of bounding box or invisible */
         if (p[0] >= ficp->bounds[0] && p[1] >= ficp->bounds[1] &&
		     p[0] <= ficp->bounds[2] && p[1] <= ficp->bounds[3] &&
			 p[3] > 0) {
			const size_t ix = (int)(ficp->ws0 * p[0] - ficp->wb0s0) + ficp->width * (int)(ficp->hs1 * p[1] - ficp->hb1s1);
#if HAVE_BUILTIN_PREFETCH
			/* prefetch for reading (0) with no locality (0). This (partially)
			 * hides the load latency for the += operation at the end of this
			 * block */
			__builtin_prefetch (&ficp->buckets[ix], 0, 0);
#endif

			double4 interpcolor = color_palette_lookup (p[2],
					fthp->cp.palette_mode, ficp->dmap, cmap_size);

            const double logvis = p[3];
            if (logvis != 1.0) {
			   interpcolor *= logvis;
            }

            ficp->buckets[ix] += interpcolor;

         }
      }
      
      /* Release mutex */
      pthread_mutex_unlock(&ficp->bucket_mutex);

   }

done:
   free (iter_storage);
   return NULL;
}

/*	Perform clipping
 */
static double4 clip (const double4 in, const double g, const double linrange,
		const double highpow, const double vibrancy) {
	double alpha, ls;

	if (in[3] <= 0.0) {
		alpha = 0.0;
		ls = 0.0;
	} else {
		alpha = flam3_calc_alpha (in[3], g, linrange);
		ls = vibrancy * alpha / in[3];
		alpha = clamp (alpha, 0.0, 1.0);
	}

	double4 newrgb = flam3_calc_newrgb (in, ls, highpow);
	newrgb += (1.0-vibrancy) * pow_d4 (in, g);
	if (alpha > 0.0) {
		newrgb /= alpha;
	} else {
		newrgb = (double4) {0, 0, 0, 0};
	}
	newrgb[3] = alpha;
	newrgb = clamp_d4 (newrgb, 0.0, 1.0);

	return newrgb;
}

int render_rectangle(flam3_frame *spec, void *out,
			     int field, stat_struct *stats) {
   long nbuckets;
   int i, j, k, batch_num, temporal_sample_num;
   double nsamples, batch_size;
   double *filter, *temporal_filter, *temporal_deltas, *batch_filter;
   double ppux=0, ppuy=0;
   int image_width, image_height;    /* size of the image to produce */
   int out_width;
   int filter_width=0;
   int bytes_per_channel = spec->bytes_per_channel;
   int oversample;
   double highpow;
   int nbatches;
   int ntemporal_samples;
   flam3_palette dmap;
   int gutter_width;
   double vibrancy = 0.0;
   double gamma = 0.0;
   int vib_gam_n = 0;
   time_t progress_began=0;
   int verbose = spec->verbose;
   flam3_genome cp;
   unsigned short *xform_distrib;
   flam3_iter_constants fic;
   flam3_thread_helper *fth;
   pthread_attr_t pt_attr;
   pthread_t *myThreads=NULL;
   int thi;
   time_t tstart,tend;   
   double sumfilt;
   int cmap_size;
   
   /* Per-render progress timers */
   time_t progress_timer=0;
   time_t progress_timer_history[64];
   double progress_history[64];
   int progress_history_mark = 0;

   tstart = time(NULL);

   fic.badvals = 0;
   fic.aborted = 0;

   stats->num_iters = 0;

   /* correct for apophysis's use of 255 colors in the palette rather than all 256 */
   cmap_size = 256;

   memset(&cp,0, sizeof(flam3_genome));

   /* interpolate and get a control point                      */
   flam3_interpolate(spec->genomes, spec->ngenomes, spec->time, 0, &cp);
   oversample = cp.spatial_oversample;
   highpow = cp.highlight_power;
   nbatches = cp.nbatches;
   ntemporal_samples = cp.ntemporal_samples;

   if (nbatches < 1) {
       fprintf(stderr, "nbatches must be positive, not %d.\n", nbatches);
       return(1);
   }

   if (oversample < 1) {
       fprintf(stderr, "oversample must be positive, not %d.\n", oversample);
       return(1);
   }

   /* Initialize the thread helper structures */
   fth = (flam3_thread_helper *)calloc(spec->nthreads,sizeof(flam3_thread_helper));
   for (i=0;i<spec->nthreads;i++)
      fth[i].cp.final_xform_index=-1;
      
   /* Set up the output image dimensions, adjusted for scanline */   
   const unsigned int channels = 4;
   image_width = cp.width;
   out_width = image_width;
   if (field) {
      image_height = cp.height / 2;
      
      if (field == flam3_field_odd)
         out = (unsigned char *)out + channels * bytes_per_channel * out_width;
         
      out_width *= 2;
   } else
      image_height = cp.height;


   /* Spatial Filter kernel creation */
   filter_width = flam3_create_spatial_filter(spec, field, &filter);
   
   /* handle error */
   if (filter_width<0) {
      fprintf(stderr,"flam3_create_spatial_filter returned error: aborting\n");
      return(1);
   }
      
   /* note we must free 'filter' at the end */

   /* batch filter */
   /* may want to revisit this at some point */
   batch_filter = (double *) malloc(sizeof(double) * nbatches);
   for (i=0; i<nbatches; i++)
      batch_filter[i]=1.0/(double)nbatches;

   /* temporal filter - we must free temporal_filter and temporal_deltas at the end */
   sumfilt = flam3_create_temporal_filter(nbatches*ntemporal_samples, 
                                          cp.temporal_filter_type,
                                          cp.temporal_filter_exp,
                                          cp.temporal_filter_width,
                                          &temporal_filter, &temporal_deltas);
                                                                                    

   /*
      the number of additional rows of buckets we put at the edge so
      that the filter doesn't go off the edge
   */
   gutter_width = (filter_width - oversample) / 2;

   /* Allocate the space required to render the image */
   fic.height = oversample * image_height + 2 * gutter_width;
   fic.width  = oversample * image_width  + 2 * gutter_width;

   nbuckets = (long)fic.width * (long)fic.height;

   double4 *buckets;
   int ret = posix_memalign ((void **) &buckets, sizeof (*buckets),
                             nbuckets * sizeof (*buckets));
   assert (ret == 0);
   assert (buckets != NULL);
   double4 *accumulate;
   ret = posix_memalign ((void **) &accumulate, sizeof (*accumulate),
                         nbuckets * sizeof (*accumulate));
   assert (ret == 0);
   assert (accumulate != NULL);


   if (verbose) {
      fprintf(stderr, "chaos: ");
      progress_began = time(NULL);
   }

   memset(accumulate, 0, sizeof(*accumulate) * nbuckets);


   /* Batch loop - outermost */
   for (batch_num = 0; batch_num < nbatches; batch_num++) {
      double sample_density=0.0;
      double k1, area, k2;

      memset(buckets, 0, sizeof(*buckets) * nbuckets);

      /* Temporal sample loop */
      for (temporal_sample_num = 0; temporal_sample_num < ntemporal_samples; temporal_sample_num++) {

         double temporal_sample_time;
         double color_scalar = temporal_filter[batch_num*ntemporal_samples + temporal_sample_num];

         temporal_sample_time = spec->time +
            temporal_deltas[batch_num*ntemporal_samples + temporal_sample_num];

         /* Interpolate and get a control point */
         flam3_interpolate(spec->genomes, spec->ngenomes, temporal_sample_time, 0, &cp);

         /* Get the xforms ready to render */
         if (prepare_precalc_flags(&cp)) {
            fprintf(stderr,"prepare xform pointers returned error: aborting.\n");
            return(1);
         }
         xform_distrib = flam3_create_xform_distrib(&cp);
         if (xform_distrib==NULL) {
            fprintf(stderr,"create xform distrib returned error: aborting.\n");
            return(1);
         }

         /* compute the colormap entries.                             */
         /* the input colormap is 256 long with entries from 0 to 1.0 */
         for (j = 0; j < CMAP_SIZE; j++) {
            dmap[j].index = cp.palette[(j * 256) / CMAP_SIZE].index / 256.0;
            for (k = 0; k < 4; k++)
               dmap[j].color[k] = cp.palette[(j * 256) / CMAP_SIZE].color[k] * color_scalar;
         }

         /* compute camera */
         if (1) {
            double t0, t1, shift=0.0, corner0, corner1;
            double scale;

            if (cp.sample_density <= 0.0) {
              fprintf(stderr,
                 "sample density (quality) must be greater than zero,"
                 " not %g.\n", cp.sample_density);
              return(1);
            }

            scale = pow(2.0, cp.zoom);
            sample_density = cp.sample_density * scale * scale;

            ppux = cp.pixels_per_unit * scale;
            ppuy = field ? (ppux / 2.0) : ppux;
            ppux /=  spec->pixel_aspect_ratio;
            switch (field) {
               case flam3_field_both: shift =  0.0; break;
               case flam3_field_even: shift = -0.5; break;
               case flam3_field_odd:  shift =  0.5; break;
            }
            shift = shift / ppux;
            t0 = (double) gutter_width / (oversample * ppux);
            t1 = (double) gutter_width / (oversample * ppuy);
            corner0 = cp.center[0] - image_width / ppux / 2.0;
            corner1 = cp.center[1] - image_height / ppuy / 2.0;
            fic.bounds[0] = corner0 - t0;
            fic.bounds[1] = corner1 - t1 + shift;
            fic.bounds[2] = corner0 + image_width  / ppux + t0;
            fic.bounds[3] = corner1 + image_height / ppuy + t1 + shift;
            fic.size[0] = 1.0 / (fic.bounds[2] - fic.bounds[0]);
            fic.size[1] = 1.0 / (fic.bounds[3] - fic.bounds[1]);
			rotate_center ((double2) { cp.rot_center[0], cp.rot_center[1] },
						   cp.rotate, fic.rot);
            fic.ws0 = fic.width * fic.size[0];
            fic.wb0s0 = fic.ws0 * fic.bounds[0];
            fic.hs1 = fic.height * fic.size[1];
            fic.hb1s1 = fic.hs1 * fic.bounds[1];

         }

         /* number of samples is based only on the output image size */
         nsamples = sample_density * image_width * image_height;
         
         /* how many of these samples are rendered in this loop? */
         batch_size = nsamples / (nbatches * ntemporal_samples);

         stats->num_iters += batch_size;
                  
         /* Fill in the iter constants */
         fic.xform_distrib = xform_distrib;
         fic.spec = spec;
         fic.batch_size = batch_size / (double)spec->nthreads;
         fic.temporal_sample_num = temporal_sample_num;
         fic.ntemporal_samples = ntemporal_samples;
         fic.batch_num = batch_num;
         fic.nbatches = nbatches;
         fic.cmap_size = cmap_size;

         fic.dmap = (flam3_palette_entry *)dmap;
         fic.color_scalar = color_scalar;
         fic.buckets = (void *)buckets;
         
         /* Need a timer per job */
         fic.progress_timer = &progress_timer;
         fic.progress_timer_history = &(progress_timer_history[0]);
         fic.progress_history = &(progress_history[0]);
         fic.progress_history_mark = &progress_history_mark;

         /* Initialize the thread helper structures */
         for (thi = 0; thi < spec->nthreads; thi++) {


            if (0==thi) {

               fth[thi].first_thread=1;
               if (0==batch_num && 0==temporal_sample_num)
               	fth[thi].timer_initialize = 1;
               else
               	fth[thi].timer_initialize = 0;
               	
            } else {
               fth[thi].first_thread=0;
	         	fth[thi].timer_initialize = 0;
            }

            fth[thi].fic = &fic;
            flam3_copy(&(fth[thi].cp),&cp);

         }

         /* Let's make some threads */
         myThreads = (pthread_t *)malloc(spec->nthreads * sizeof(pthread_t));

         pthread_mutex_init(&fic.bucket_mutex, NULL);

         pthread_attr_init(&pt_attr);
         pthread_attr_setdetachstate(&pt_attr,PTHREAD_CREATE_JOINABLE);

         for (thi=0; thi <spec->nthreads; thi ++)
            pthread_create(&myThreads[thi], &pt_attr, (void *)iter_thread, (void *)(&(fth[thi])));

         pthread_attr_destroy(&pt_attr);

         /* Wait for them to return */
         for (thi=0; thi < spec->nthreads; thi++)
            pthread_join(myThreads[thi], NULL);

         pthread_mutex_destroy(&fic.bucket_mutex);
         
         free(myThreads);
         
         /* Free the xform_distrib array */
         free(xform_distrib);
             
         if (fic.aborted) {
            if (verbose) fprintf(stderr, "\naborted!\n");
            goto done;
         }

         vibrancy += cp.vibrancy;
         gamma += cp.gamma;
         vib_gam_n++;

      }

	  /* XXX: the original formula has a factor 268/256 in here, not sure why */
      k1 = cp.contrast * cp.brightness * batch_filter[batch_num];
      area = image_width * image_height / (ppux * ppuy);
      k2 = (oversample * oversample * nbatches) /
             (cp.contrast * area * sample_density * sumfilt);
#if 0
      printf("iw=%d,ih=%d,ppux=%f,ppuy=%f\n",image_width,image_height,ppux,ppuy);
      printf("contrast=%f, brightness=%f, PREFILTER=%d, temporal_filter=%f\n",
        cp.contrast, cp.brightness, PREFILTER_WHITE, temporal_filter[batch_num]);
      printf("oversample=%d, nbatches=%d, area = %f, WHITE_LEVEL=%d, sample_density=%f\n",
        oversample, nbatches, area, WHITE_LEVEL, sample_density);
      printf("k1=%f,k2=%15.12f\n",k1,k2);
#endif

      for (j = 0; j < fic.height; j++) {
         for (i = 0; i < fic.width; i++) {
			const double4 c = buckets[i + j * fic.width];

            if (0.0 == c[3])
               continue;

            const double ls = (k1 * log(1.0 + c[3] * k2))/c[3];

            accumulate[i + j * fic.width] += c * ls;
         }
      }

   }

   if (verbose) {
     fprintf(stderr, "\rchaos: 100.0%%  took: %ld seconds   \n", time(NULL) - progress_began);
     fprintf(stderr, "filtering...");
   }
   

   /* filter the accumulation buffer down into the image */
   if (1) {
      int x, y;
      const double g = 1.0 / (gamma / vib_gam_n);

      double linrange = cp.gam_lin_thresh;

      vibrancy /= vib_gam_n;
      
      /* If we're in the early clip mode, perform this first step to  */
      /* apply the gamma correction and clipping before the spat filt */
      
      if (spec->earlyclip) {
         for (j = 0; j < fic.height; j++) {
            for (i = 0; i < fic.width; i++) {
               const double4 in = accumulate[i + j*fic.width];
			   accumulate[i + j*fic.width] = clip (in, g, linrange, highpow,
					   vibrancy);
            }
         }
      }

      /* Apply the spatial filter */
      y = 0;
      for (j = 0; j < image_height; j++) {
         x = 0;
         for (i = 0; i < image_width; i++) {
            int ii, jj;
			double4 t = (double4) { 0.0, 0.0, 0.0, 0.0 };

            for (ii = 0; ii < filter_width; ii++) {
               for (jj = 0; jj < filter_width; jj++) {
                  const double k = filter[ii + jj * filter_width];
                  const double4 ac = accumulate[x+ii + (y+jj)*fic.width];
                  
				  t += k * ac;
               }
            }

            /* The old way, spatial filter first and then clip after gamma */
            if (!spec->earlyclip) {
			   t = clip (t, g, linrange, highpow, vibrancy);
            }

			const double maxval = (1 << (bytes_per_channel*8)) - 1;
			t = nearbyint_d4 (t * maxval);

			if (bytes_per_channel == 2) {
				uint16_t * const p = &((uint16_t *) out)[channels * (i + j * out_width)];
				p[0] = t[0];
				p[1] = t[1];
				p[2] = t[2];
				p[3] = t[3];
			} else if (bytes_per_channel == 1) {
				uint8_t * const p = &((uint8_t *) out)[channels * (i + j * out_width)];
				p[0] = t[0];
				p[1] = t[1];
				p[2] = t[2];
				p[3] = t[3];
			} else {
				assert (0);
			}

            x += oversample;
         }
         y += oversample;
      }
   }

 done:

   stats->badvals = fic.badvals;

   free(temporal_filter);
   free(temporal_deltas);
   free(batch_filter);
   free(filter);
   free(buckets);
   free(accumulate);
   /* We have to clear the cps in fth first */
   for (thi = 0; thi < spec->nthreads; thi++) {
      clear_cp(&(fth[thi].cp),0);
   }   
   free(fth);
   clear_cp(&cp,0);

   tend = time(NULL);
   stats->render_seconds = (int)(tend-tstart);
   
   return(0);

}