summaryrefslogtreecommitdiff
path: root/faad2/src/libfaad/ps_dec.c
diff options
context:
space:
mode:
Diffstat (limited to 'faad2/src/libfaad/ps_dec.c')
-rw-r--r--faad2/src/libfaad/ps_dec.c2013
1 files changed, 2013 insertions, 0 deletions
diff --git a/faad2/src/libfaad/ps_dec.c b/faad2/src/libfaad/ps_dec.c
new file mode 100644
index 0000000..c493fde
--- /dev/null
+++ b/faad2/src/libfaad/ps_dec.c
@@ -0,0 +1,2013 @@
+/*
+** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding
+** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com
+**
+** This program is free software; you can redistribute it and/or modify
+** it under the terms of the GNU General Public License as published by
+** the Free Software Foundation; either version 2 of the License, or
+** (at your option) any later version.
+**
+** This program is distributed in the hope that it will be useful,
+** but WITHOUT ANY WARRANTY; without even the implied warranty of
+** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+** GNU General Public License for more details.
+**
+** You should have received a copy of the GNU General Public License
+** along with this program; if not, write to the Free Software
+** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+**
+** Any non-GPL usage of this software or parts of this software is strictly
+** forbidden.
+**
+** The "appropriate copyright message" mentioned in section 2c of the GPLv2
+** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com"
+**
+** Commercial non-GPL licensing of this software is possible.
+** For more info contact Nero AG through Mpeg4AAClicense@nero.com.
+**
+** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $
+**/
+
+#include "common.h"
+
+#ifdef PS_DEC
+
+#include <stdlib.h>
+#include "ps_dec.h"
+#include "ps_tables.h"
+
+/* constants */
+#define NEGATE_IPD_MASK (0x1000)
+#define DECAY_SLOPE FRAC_CONST(0.05)
+#define COEF_SQRT2 COEF_CONST(1.4142135623731)
+
+/* tables */
+/* filters are mirrored in coef 6, second half left out */
+static const real_t p8_13_20[7] =
+{
+ FRAC_CONST(0.00746082949812),
+ FRAC_CONST(0.02270420949825),
+ FRAC_CONST(0.04546865930473),
+ FRAC_CONST(0.07266113929591),
+ FRAC_CONST(0.09885108575264),
+ FRAC_CONST(0.11793710567217),
+ FRAC_CONST(0.125)
+};
+
+static const real_t p2_13_20[7] =
+{
+ FRAC_CONST(0.0),
+ FRAC_CONST(0.01899487526049),
+ FRAC_CONST(0.0),
+ FRAC_CONST(-0.07293139167538),
+ FRAC_CONST(0.0),
+ FRAC_CONST(0.30596630545168),
+ FRAC_CONST(0.5)
+};
+
+static const real_t p12_13_34[7] =
+{
+ FRAC_CONST(0.04081179924692),
+ FRAC_CONST(0.03812810994926),
+ FRAC_CONST(0.05144908135699),
+ FRAC_CONST(0.06399831151592),
+ FRAC_CONST(0.07428313801106),
+ FRAC_CONST(0.08100347892914),
+ FRAC_CONST(0.08333333333333)
+};
+
+static const real_t p8_13_34[7] =
+{
+ FRAC_CONST(0.01565675600122),
+ FRAC_CONST(0.03752716391991),
+ FRAC_CONST(0.05417891378782),
+ FRAC_CONST(0.08417044116767),
+ FRAC_CONST(0.10307344158036),
+ FRAC_CONST(0.12222452249753),
+ FRAC_CONST(0.125)
+};
+
+static const real_t p4_13_34[7] =
+{
+ FRAC_CONST(-0.05908211155639),
+ FRAC_CONST(-0.04871498374946),
+ FRAC_CONST(0.0),
+ FRAC_CONST(0.07778723915851),
+ FRAC_CONST(0.16486303567403),
+ FRAC_CONST(0.23279856662996),
+ FRAC_CONST(0.25)
+};
+
+#ifdef PARAM_32KHZ
+static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = {
+ { 1, 2, 3 } /* d_24kHz */,
+ { 3, 4, 5 } /* d_48kHz */
+};
+#else
+static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = {
+ 3, 4, 5 /* d_48kHz */
+};
+#endif
+static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */
+ FRAC_CONST(0.65143905753106),
+ FRAC_CONST(0.56471812200776),
+ FRAC_CONST(0.48954165955695)
+};
+
+static const uint8_t group_border20[10+12 + 1] =
+{
+ 6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */
+ 9, 8, /* 2 subqmf subbands */
+ 10, 11, /* 2 subqmf subbands */
+ 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64
+};
+
+static const uint8_t group_border34[32+18 + 1] =
+{
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, /* 12 subqmf subbands */
+ 12, 13, 14, 15, 16, 17, 18, 19, /* 8 subqmf subbands */
+ 20, 21, 22, 23, /* 4 subqmf subbands */
+ 24, 25, 26, 27, /* 4 subqmf subbands */
+ 28, 29, 30, 31, /* 4 subqmf subbands */
+ 32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27
+};
+
+static const uint16_t map_group2bk20[10+12] =
+{
+ (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
+ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
+};
+
+static const uint16_t map_group2bk34[32+18] =
+{
+ 0, 1, 2, 3, 4, 5, 6, 6, 7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0),
+ 10, 10, 4, 5, 6, 7, 8, 9,
+ 10, 11, 12, 9,
+ 14, 11, 12, 13,
+ 14, 15, 16, 13,
+ 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33
+};
+
+/* type definitions */
+typedef struct
+{
+ uint8_t frame_len;
+ uint8_t resolution20[3];
+ uint8_t resolution34[5];
+
+ qmf_t *work;
+ qmf_t **buffer;
+ qmf_t **temp;
+} hyb_info;
+
+/* static function declarations */
+static void ps_data_decode(ps_info *ps);
+static hyb_info *hybrid_init(uint8_t numTimeSlotsRate);
+static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid);
+static void INLINE DCT3_4_unscaled(real_t *y, real_t *x);
+static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid);
+static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
+ uint8_t use34, uint8_t numTimeSlotsRate);
+static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
+ uint8_t use34, uint8_t numTimeSlotsRate);
+static int8_t delta_clip(int8_t i, int8_t min, int8_t max);
+static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
+ uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
+ int8_t min_index, int8_t max_index);
+static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
+ uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
+ int8_t and_modulo);
+static void map20indexto34(int8_t *index, uint8_t bins);
+#ifdef PS_LOW_POWER
+static void map34indexto20(int8_t *index, uint8_t bins);
+#endif
+static void ps_data_decode(ps_info *ps);
+static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
+ qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
+static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
+ qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]);
+
+/* */
+
+
+static hyb_info *hybrid_init(uint8_t numTimeSlotsRate)
+{
+ uint8_t i;
+
+ hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info));
+
+ hyb->resolution34[0] = 12;
+ hyb->resolution34[1] = 8;
+ hyb->resolution34[2] = 4;
+ hyb->resolution34[3] = 4;
+ hyb->resolution34[4] = 4;
+
+ hyb->resolution20[0] = 8;
+ hyb->resolution20[1] = 2;
+ hyb->resolution20[2] = 2;
+
+ hyb->frame_len = numTimeSlotsRate;
+
+ hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t));
+ memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t));
+
+ hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*));
+ for (i = 0; i < 5; i++)
+ {
+ hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t));
+ memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t));
+ }
+
+ hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*));
+ for (i = 0; i < hyb->frame_len; i++)
+ {
+ hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t));
+ }
+
+ return hyb;
+}
+
+static void hybrid_free(hyb_info *hyb)
+{
+ uint8_t i;
+
+ if (!hyb) return;
+
+ if (hyb->work)
+ faad_free(hyb->work);
+
+ for (i = 0; i < 5; i++)
+ {
+ if (hyb->buffer[i])
+ faad_free(hyb->buffer[i]);
+ }
+ if (hyb->buffer)
+ faad_free(hyb->buffer);
+
+ for (i = 0; i < hyb->frame_len; i++)
+ {
+ if (hyb->temp[i])
+ faad_free(hyb->temp[i]);
+ }
+ if (hyb->temp)
+ faad_free(hyb->temp);
+
+ faad_free(hyb);
+}
+
+/* real filter, size 2 */
+static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid)
+{
+ uint8_t i;
+
+ for (i = 0; i < frame_len; i++)
+ {
+ real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i])));
+ real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i])));
+ real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i])));
+ real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
+ real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
+ real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
+ real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i]));
+ real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i])));
+ real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i])));
+ real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i])));
+ real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
+ real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
+ real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
+ real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i]));
+
+ /* q = 0 */
+ QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6;
+ QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6;
+
+ /* q = 1 */
+ QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6;
+ QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6;
+ }
+}
+
+/* complex filter, size 4 */
+static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid)
+{
+ uint8_t i;
+ real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2];
+
+ for (i = 0; i < frame_len; i++)
+ {
+ input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) +
+ MUL_F(filter[6], QMF_RE(buffer[i+6]));
+ input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655),
+ (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) +
+ MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) -
+ MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7])))));
+
+ input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) -
+ MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8])));
+ input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655),
+ (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) -
+ MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) -
+ MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7])))));
+
+ input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) -
+ MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8])));
+ input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655),
+ (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) -
+ MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) -
+ MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7])))));
+
+ input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) +
+ MUL_F(filter[6], QMF_IM(buffer[i+6]));
+ input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655),
+ (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) +
+ MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) -
+ MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7])))));
+
+ /* q == 0 */
+ QMF_RE(X_hybrid[i][0]) = input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1];
+ QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1];
+
+ /* q == 1 */
+ QMF_RE(X_hybrid[i][1]) = input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1];
+ QMF_IM(X_hybrid[i][1]) = input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1];
+
+ /* q == 2 */
+ QMF_RE(X_hybrid[i][2]) = input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1];
+ QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1];
+
+ /* q == 3 */
+ QMF_RE(X_hybrid[i][3]) = input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1];
+ QMF_IM(X_hybrid[i][3]) = input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1];
+ }
+}
+
+static void INLINE DCT3_4_unscaled(real_t *y, real_t *x)
+{
+ real_t f0, f1, f2, f3, f4, f5, f6, f7, f8;
+
+ f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476));
+ f1 = x[0] - f0;
+ f2 = x[0] + f0;
+ f3 = x[1] + x[3];
+ f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766));
+ f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866));
+ f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967));
+ f7 = f4 + f5;
+ f8 = f6 - f5;
+ y[3] = f2 - f8;
+ y[0] = f2 + f8;
+ y[2] = f1 - f7;
+ y[1] = f1 + f7;
+}
+
+/* complex filter, size 8 */
+static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid)
+{
+ uint8_t i, n;
+ real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4];
+ real_t x[4];
+
+ for (i = 0; i < frame_len; i++)
+ {
+ input_re1[0] = MUL_F(filter[6],QMF_RE(buffer[6+i]));
+ input_re1[1] = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i])));
+ input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i])));
+ input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i])));
+
+ input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i])));
+ input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i])));
+ input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i])));
+ input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i])));
+
+ for (n = 0; n < 4; n++)
+ {
+ x[n] = input_re1[n] - input_im1[3-n];
+ }
+ DCT3_4_unscaled(x, x);
+ QMF_RE(X_hybrid[i][7]) = x[0];
+ QMF_RE(X_hybrid[i][5]) = x[2];
+ QMF_RE(X_hybrid[i][3]) = x[3];
+ QMF_RE(X_hybrid[i][1]) = x[1];
+
+ for (n = 0; n < 4; n++)
+ {
+ x[n] = input_re1[n] + input_im1[3-n];
+ }
+ DCT3_4_unscaled(x, x);
+ QMF_RE(X_hybrid[i][6]) = x[1];
+ QMF_RE(X_hybrid[i][4]) = x[3];
+ QMF_RE(X_hybrid[i][2]) = x[2];
+ QMF_RE(X_hybrid[i][0]) = x[0];
+
+ input_im2[0] = MUL_F(filter[6],QMF_IM(buffer[6+i]));
+ input_im2[1] = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i])));
+ input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i])));
+ input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i])));
+
+ input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i])));
+ input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i])));
+ input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i])));
+ input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i])));
+
+ for (n = 0; n < 4; n++)
+ {
+ x[n] = input_im2[n] + input_re2[3-n];
+ }
+ DCT3_4_unscaled(x, x);
+ QMF_IM(X_hybrid[i][7]) = x[0];
+ QMF_IM(X_hybrid[i][5]) = x[2];
+ QMF_IM(X_hybrid[i][3]) = x[3];
+ QMF_IM(X_hybrid[i][1]) = x[1];
+
+ for (n = 0; n < 4; n++)
+ {
+ x[n] = input_im2[n] - input_re2[3-n];
+ }
+ DCT3_4_unscaled(x, x);
+ QMF_IM(X_hybrid[i][6]) = x[1];
+ QMF_IM(X_hybrid[i][4]) = x[3];
+ QMF_IM(X_hybrid[i][2]) = x[2];
+ QMF_IM(X_hybrid[i][0]) = x[0];
+ }
+}
+
+static void INLINE DCT3_6_unscaled(real_t *y, real_t *x)
+{
+ real_t f0, f1, f2, f3, f4, f5, f6, f7;
+
+ f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655));
+ f1 = x[0] + f0;
+ f2 = x[0] - f0;
+ f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655));
+ f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5));
+ f5 = f4 - x[4];
+ f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252));
+ f7 = f6 - f3;
+ y[0] = f1 + f6 + f4;
+ y[1] = f2 + f3 - x[4];
+ y[2] = f7 + f2 - f5;
+ y[3] = f1 - f7 - f5;
+ y[4] = f1 - f3 - x[4];
+ y[5] = f2 - f6 + f4;
+}
+
+/* complex filter, size 12 */
+static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter,
+ qmf_t *buffer, qmf_t **X_hybrid)
+{
+ uint8_t i, n;
+ real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6];
+ real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6];
+
+ for (i = 0; i < frame_len; i++)
+ {
+ for (n = 0; n < 6; n++)
+ {
+ if (n == 0)
+ {
+ input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]);
+ input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]);
+ } else {
+ input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]);
+ input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]);
+ }
+ input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]);
+ input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]);
+ }
+
+ DCT3_6_unscaled(out_re1, input_re1);
+ DCT3_6_unscaled(out_re2, input_re2);
+
+ DCT3_6_unscaled(out_im1, input_im1);
+ DCT3_6_unscaled(out_im2, input_im2);
+
+ for (n = 0; n < 6; n += 2)
+ {
+ QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n];
+ QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n];
+ QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1];
+ QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1];
+
+ QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1];
+ QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1];
+ QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n];
+ QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n];
+ }
+ }
+}
+
+/* Hybrid analysis: further split up QMF subbands
+ * to improve frequency resolution
+ */
+static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
+ uint8_t use34, uint8_t numTimeSlotsRate)
+{
+ uint8_t k, n, band;
+ uint8_t offset = 0;
+ uint8_t qmf_bands = (use34) ? 5 : 3;
+ uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
+
+ for (band = 0; band < qmf_bands; band++)
+ {
+ /* build working buffer */
+ memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t));
+
+ /* add new samples */
+ for (n = 0; n < hyb->frame_len; n++)
+ {
+ QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]);
+ QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]);
+ }
+
+ /* store samples */
+ memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t));
+
+
+ switch(resolution[band])
+ {
+ case 2:
+ /* Type B real filter, Q[p] = 2 */
+ channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp);
+ break;
+ case 4:
+ /* Type A complex filter, Q[p] = 4 */
+ channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp);
+ break;
+ case 8:
+ /* Type A complex filter, Q[p] = 8 */
+ channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20,
+ hyb->work, hyb->temp);
+ break;
+ case 12:
+ /* Type A complex filter, Q[p] = 12 */
+ channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp);
+ break;
+ }
+
+ for (n = 0; n < hyb->frame_len; n++)
+ {
+ for (k = 0; k < resolution[band]; k++)
+ {
+ QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]);
+ QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]);
+ }
+ }
+ offset += resolution[band];
+ }
+
+ /* group hybrid channels */
+ if (!use34)
+ {
+ for (n = 0; n < numTimeSlotsRate; n++)
+ {
+ QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]);
+ QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]);
+ QMF_RE(X_hybrid[n][4]) = 0;
+ QMF_IM(X_hybrid[n][4]) = 0;
+
+ QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]);
+ QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]);
+ QMF_RE(X_hybrid[n][5]) = 0;
+ QMF_IM(X_hybrid[n][5]) = 0;
+ }
+ }
+}
+
+static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32],
+ uint8_t use34, uint8_t numTimeSlotsRate)
+{
+ uint8_t k, n, band;
+ uint8_t offset = 0;
+ uint8_t qmf_bands = (use34) ? 5 : 3;
+ uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20;
+
+ for(band = 0; band < qmf_bands; band++)
+ {
+ for (n = 0; n < hyb->frame_len; n++)
+ {
+ QMF_RE(X[n][band]) = 0;
+ QMF_IM(X[n][band]) = 0;
+
+ for (k = 0; k < resolution[band]; k++)
+ {
+ QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]);
+ QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]);
+ }
+ }
+ offset += resolution[band];
+ }
+}
+
+/* limits the value i to the range [min,max] */
+static int8_t delta_clip(int8_t i, int8_t min, int8_t max)
+{
+ if (i < min)
+ return min;
+ else if (i > max)
+ return max;
+ else
+ return i;
+}
+
+//int iid = 0;
+
+/* delta decode array */
+static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
+ uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
+ int8_t min_index, int8_t max_index)
+{
+ int8_t i;
+
+ if (enable == 1)
+ {
+ if (dt_flag == 0)
+ {
+ /* delta coded in frequency direction */
+ index[0] = 0 + index[0];
+ index[0] = delta_clip(index[0], min_index, max_index);
+
+ for (i = 1; i < nr_par; i++)
+ {
+ index[i] = index[i-1] + index[i];
+ index[i] = delta_clip(index[i], min_index, max_index);
+ }
+ } else {
+ /* delta coded in time direction */
+ for (i = 0; i < nr_par; i++)
+ {
+ //int8_t tmp2;
+ //int8_t tmp = index[i];
+
+ //printf("%d %d\n", index_prev[i*stride], index[i]);
+ //printf("%d\n", index[i]);
+
+ index[i] = index_prev[i*stride] + index[i];
+ //tmp2 = index[i];
+ index[i] = delta_clip(index[i], min_index, max_index);
+
+ //if (iid)
+ //{
+ // if (index[i] == 7)
+ // {
+ // printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2);
+ // }
+ //}
+ }
+ }
+ } else {
+ /* set indices to zero */
+ for (i = 0; i < nr_par; i++)
+ {
+ index[i] = 0;
+ }
+ }
+
+ /* coarse */
+ if (stride == 2)
+ {
+ for (i = (nr_par<<1)-1; i > 0; i--)
+ {
+ index[i] = index[i>>1];
+ }
+ }
+}
+
+/* delta modulo decode array */
+/* in: log2 value of the modulo value to allow using AND instead of MOD */
+static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev,
+ uint8_t dt_flag, uint8_t nr_par, uint8_t stride,
+ int8_t and_modulo)
+{
+ int8_t i;
+
+ if (enable == 1)
+ {
+ if (dt_flag == 0)
+ {
+ /* delta coded in frequency direction */
+ index[0] = 0 + index[0];
+ index[0] &= and_modulo;
+
+ for (i = 1; i < nr_par; i++)
+ {
+ index[i] = index[i-1] + index[i];
+ index[i] &= and_modulo;
+ }
+ } else {
+ /* delta coded in time direction */
+ for (i = 0; i < nr_par; i++)
+ {
+ index[i] = index_prev[i*stride] + index[i];
+ index[i] &= and_modulo;
+ }
+ }
+ } else {
+ /* set indices to zero */
+ for (i = 0; i < nr_par; i++)
+ {
+ index[i] = 0;
+ }
+ }
+
+ /* coarse */
+ if (stride == 2)
+ {
+ index[0] = 0;
+ for (i = (nr_par<<1)-1; i > 0; i--)
+ {
+ index[i] = index[i>>1];
+ }
+ }
+}
+
+#ifdef PS_LOW_POWER
+static void map34indexto20(int8_t *index, uint8_t bins)
+{
+ index[0] = (2*index[0]+index[1])/3;
+ index[1] = (index[1]+2*index[2])/3;
+ index[2] = (2*index[3]+index[4])/3;
+ index[3] = (index[4]+2*index[5])/3;
+ index[4] = (index[6]+index[7])/2;
+ index[5] = (index[8]+index[9])/2;
+ index[6] = index[10];
+ index[7] = index[11];
+ index[8] = (index[12]+index[13])/2;
+ index[9] = (index[14]+index[15])/2;
+ index[10] = index[16];
+
+ if (bins == 34)
+ {
+ index[11] = index[17];
+ index[12] = index[18];
+ index[13] = index[19];
+ index[14] = (index[20]+index[21])/2;
+ index[15] = (index[22]+index[23])/2;
+ index[16] = (index[24]+index[25])/2;
+ index[17] = (index[26]+index[27])/2;
+ index[18] = (index[28]+index[29]+index[30]+index[31])/4;
+ index[19] = (index[32]+index[33])/2;
+ }
+}
+#endif
+
+static void map20indexto34(int8_t *index, uint8_t bins)
+{
+ index[0] = index[0];
+ index[1] = (index[0] + index[1])/2;
+ index[2] = index[1];
+ index[3] = index[2];
+ index[4] = (index[2] + index[3])/2;
+ index[5] = index[3];
+ index[6] = index[4];
+ index[7] = index[4];
+ index[8] = index[5];
+ index[9] = index[5];
+ index[10] = index[6];
+ index[11] = index[7];
+ index[12] = index[8];
+ index[13] = index[8];
+ index[14] = index[9];
+ index[15] = index[9];
+ index[16] = index[10];
+
+ if (bins == 34)
+ {
+ index[17] = index[11];
+ index[18] = index[12];
+ index[19] = index[13];
+ index[20] = index[14];
+ index[21] = index[14];
+ index[22] = index[15];
+ index[23] = index[15];
+ index[24] = index[16];
+ index[25] = index[16];
+ index[26] = index[17];
+ index[27] = index[17];
+ index[28] = index[18];
+ index[29] = index[18];
+ index[30] = index[18];
+ index[31] = index[18];
+ index[32] = index[19];
+ index[33] = index[19];
+ }
+}
+
+/* parse the bitstream data decoded in ps_data() */
+static void ps_data_decode(ps_info *ps)
+{
+ uint8_t env, bin;
+
+ /* ps data not available, use data from previous frame */
+ if (ps->ps_data_available == 0)
+ {
+ ps->num_env = 0;
+ }
+
+ for (env = 0; env < ps->num_env; env++)
+ {
+ int8_t *iid_index_prev;
+ int8_t *icc_index_prev;
+ int8_t *ipd_index_prev;
+ int8_t *opd_index_prev;
+
+ int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/;
+
+ if (env == 0)
+ {
+ /* take last envelope from previous frame */
+ iid_index_prev = ps->iid_index_prev;
+ icc_index_prev = ps->icc_index_prev;
+ ipd_index_prev = ps->ipd_index_prev;
+ opd_index_prev = ps->opd_index_prev;
+ } else {
+ /* take index values from previous envelope */
+ iid_index_prev = ps->iid_index[env - 1];
+ icc_index_prev = ps->icc_index[env - 1];
+ ipd_index_prev = ps->ipd_index[env - 1];
+ opd_index_prev = ps->opd_index[env - 1];
+ }
+
+// iid = 1;
+ /* delta decode iid parameters */
+ delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev,
+ ps->iid_dt[env], ps->nr_iid_par,
+ (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1,
+ -num_iid_steps, num_iid_steps);
+// iid = 0;
+
+ /* delta decode icc parameters */
+ delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev,
+ ps->icc_dt[env], ps->nr_icc_par,
+ (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1,
+ 0, 7);
+
+ /* delta modulo decode ipd parameters */
+ delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev,
+ ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7);
+
+ /* delta modulo decode opd parameters */
+ delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev,
+ ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7);
+ }
+
+ /* handle error case */
+ if (ps->num_env == 0)
+ {
+ /* force to 1 */
+ ps->num_env = 1;
+
+ if (ps->enable_iid)
+ {
+ for (bin = 0; bin < 34; bin++)
+ ps->iid_index[0][bin] = ps->iid_index_prev[bin];
+ } else {
+ for (bin = 0; bin < 34; bin++)
+ ps->iid_index[0][bin] = 0;
+ }
+
+ if (ps->enable_icc)
+ {
+ for (bin = 0; bin < 34; bin++)
+ ps->icc_index[0][bin] = ps->icc_index_prev[bin];
+ } else {
+ for (bin = 0; bin < 34; bin++)
+ ps->icc_index[0][bin] = 0;
+ }
+
+ if (ps->enable_ipdopd)
+ {
+ for (bin = 0; bin < 17; bin++)
+ {
+ ps->ipd_index[0][bin] = ps->ipd_index_prev[bin];
+ ps->opd_index[0][bin] = ps->opd_index_prev[bin];
+ }
+ } else {
+ for (bin = 0; bin < 17; bin++)
+ {
+ ps->ipd_index[0][bin] = 0;
+ ps->opd_index[0][bin] = 0;
+ }
+ }
+ }
+
+ /* update previous indices */
+ for (bin = 0; bin < 34; bin++)
+ ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin];
+ for (bin = 0; bin < 34; bin++)
+ ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin];
+ for (bin = 0; bin < 17; bin++)
+ {
+ ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin];
+ ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin];
+ }
+
+ ps->ps_data_available = 0;
+
+ if (ps->frame_class == 0)
+ {
+ ps->border_position[0] = 0;
+ for (env = 1; env < ps->num_env; env++)
+ {
+ ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env;
+ }
+ ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
+ } else {
+ ps->border_position[0] = 0;
+
+ if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate)
+ {
+ for (bin = 0; bin < 34; bin++)
+ {
+ ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin];
+ ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin];
+ }
+ for (bin = 0; bin < 17; bin++)
+ {
+ ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin];
+ ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin];
+ }
+ ps->num_env++;
+ ps->border_position[ps->num_env] = ps->numTimeSlotsRate;
+ }
+
+ for (env = 1; env < ps->num_env; env++)
+ {
+ int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env);
+
+ if (ps->border_position[env] > thr)
+ {
+ ps->border_position[env] = thr;
+ } else {
+ thr = ps->border_position[env-1]+1;
+ if (ps->border_position[env] < thr)
+ {
+ ps->border_position[env] = thr;
+ }
+ }
+ }
+ }
+
+ /* make sure that the indices of all parameters can be mapped
+ * to the same hybrid synthesis filterbank
+ */
+#ifdef PS_LOW_POWER
+ for (env = 0; env < ps->num_env; env++)
+ {
+ if (ps->iid_mode == 2 || ps->iid_mode == 5)
+ map34indexto20(ps->iid_index[env], 34);
+ if (ps->icc_mode == 2 || ps->icc_mode == 5)
+ map34indexto20(ps->icc_index[env], 34);
+
+ /* disable ipd/opd */
+ for (bin = 0; bin < 17; bin++)
+ {
+ ps->aaIpdIndex[env][bin] = 0;
+ ps->aaOpdIndex[env][bin] = 0;
+ }
+ }
+#else
+ if (ps->use34hybrid_bands)
+ {
+ for (env = 0; env < ps->num_env; env++)
+ {
+ if (ps->iid_mode != 2 && ps->iid_mode != 5)
+ map20indexto34(ps->iid_index[env], 34);
+ if (ps->icc_mode != 2 && ps->icc_mode != 5)
+ map20indexto34(ps->icc_index[env], 34);
+ if (ps->ipd_mode != 2 && ps->ipd_mode != 5)
+ {
+ map20indexto34(ps->ipd_index[env], 17);
+ map20indexto34(ps->opd_index[env], 17);
+ }
+ }
+ }
+#endif
+
+#if 0
+ for (env = 0; env < ps->num_env; env++)
+ {
+ printf("iid[env:%d]:", env);
+ for (bin = 0; bin < 34; bin++)
+ {
+ printf(" %d", ps->iid_index[env][bin]);
+ }
+ printf("\n");
+ }
+ for (env = 0; env < ps->num_env; env++)
+ {
+ printf("icc[env:%d]:", env);
+ for (bin = 0; bin < 34; bin++)
+ {
+ printf(" %d", ps->icc_index[env][bin]);
+ }
+ printf("\n");
+ }
+ for (env = 0; env < ps->num_env; env++)
+ {
+ printf("ipd[env:%d]:", env);
+ for (bin = 0; bin < 17; bin++)
+ {
+ printf(" %d", ps->ipd_index[env][bin]);
+ }
+ printf("\n");
+ }
+ for (env = 0; env < ps->num_env; env++)
+ {
+ printf("opd[env:%d]:", env);
+ for (bin = 0; bin < 17; bin++)
+ {
+ printf(" %d", ps->opd_index[env][bin]);
+ }
+ printf("\n");
+ }
+ printf("\n");
+#endif
+}
+
+/* decorrelate the mono signal using an allpass filter */
+static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
+ qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
+{
+ uint8_t gr, n, m, bk;
+ uint8_t temp_delay;
+ uint8_t sb, maxsb;
+ const complex_t *Phi_Fract_SubQmf;
+ uint8_t temp_delay_ser[NO_ALLPASS_LINKS];
+ real_t P_SmoothPeakDecayDiffNrg, nrg;
+ real_t P[32][34];
+ real_t G_TransientRatio[32][34] = {{0}};
+ complex_t inputLeft;
+
+
+ /* chose hybrid filterbank: 20 or 34 band case */
+ if (ps->use34hybrid_bands)
+ {
+ Phi_Fract_SubQmf = Phi_Fract_SubQmf34;
+ } else{
+ Phi_Fract_SubQmf = Phi_Fract_SubQmf20;
+ }
+
+ /* clear the energy values */
+ for (n = 0; n < 32; n++)
+ {
+ for (bk = 0; bk < 34; bk++)
+ {
+ P[n][bk] = 0;
+ }
+ }
+
+ /* calculate the energy in each parameter band b(k) */
+ for (gr = 0; gr < ps->num_groups; gr++)
+ {
+ /* select the parameter index b(k) to which this group belongs */
+ bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
+
+ /* select the upper subband border for this group */
+ maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1];
+
+ for (sb = ps->group_border[gr]; sb < maxsb; sb++)
+ {
+ for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
+ {
+#ifdef FIXED_POINT
+ uint32_t in_re, in_im;
+#endif
+
+ /* input from hybrid subbands or QMF subbands */
+ if (gr < ps->num_hybrid_groups)
+ {
+ RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
+ IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
+ } else {
+ RE(inputLeft) = QMF_RE(X_left[n][sb]);
+ IM(inputLeft) = QMF_IM(X_left[n][sb]);
+ }
+
+ /* accumulate energy */
+#ifdef FIXED_POINT
+ /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF
+ * meaning that P will be scaled by 2^(-10) compared to floating point version
+ */
+ in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
+ in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS);
+ P[n][bk] += in_re*in_re + in_im*in_im;
+#else
+ P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft));
+#endif
+ }
+ }
+ }
+
+#if 0
+ for (n = 0; n < 32; n++)
+ {
+ for (bk = 0; bk < 34; bk++)
+ {
+#ifdef FIXED_POINT
+ printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/);
+#else
+ printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0);
+#endif
+ }
+ }
+#endif
+
+ /* calculate transient reduction ratio for each parameter band b(k) */
+ for (bk = 0; bk < ps->nr_par_bands; bk++)
+ {
+ for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
+ {
+ const real_t gamma = COEF_CONST(1.5);
+
+ ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay);
+ if (ps->P_PeakDecayNrg[bk] < P[n][bk])
+ ps->P_PeakDecayNrg[bk] = P[n][bk];
+
+ /* apply smoothing filter to peak decay energy */
+ P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk];
+ P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth);
+ ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg;
+
+ /* apply smoothing filter to energy */
+ nrg = ps->P_prev[bk];
+ nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth);
+ ps->P_prev[bk] = nrg;
+
+ /* calculate transient ratio */
+ if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg)
+ {
+ G_TransientRatio[n][bk] = REAL_CONST(1.0);
+ } else {
+ G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma)));
+ }
+ }
+ }
+
+#if 0
+ for (n = 0; n < 32; n++)
+ {
+ for (bk = 0; bk < 34; bk++)
+ {
+#ifdef FIXED_POINT
+ printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION);
+#else
+ printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]);
+#endif
+ }
+ }
+#endif
+
+ /* apply stereo decorrelation filter to the signal */
+ for (gr = 0; gr < ps->num_groups; gr++)
+ {
+ if (gr < ps->num_hybrid_groups)
+ maxsb = ps->group_border[gr] + 1;
+ else
+ maxsb = ps->group_border[gr + 1];
+
+ /* QMF channel */
+ for (sb = ps->group_border[gr]; sb < maxsb; sb++)
+ {
+ real_t g_DecaySlope;
+ real_t g_DecaySlope_filt[NO_ALLPASS_LINKS];
+
+ /* g_DecaySlope: [0..1] */
+ if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff)
+ {
+ g_DecaySlope = FRAC_CONST(1.0);
+ } else {
+ int8_t decay = ps->decay_cutoff - sb;
+ if (decay <= -20 /* -1/DECAY_SLOPE */)
+ {
+ g_DecaySlope = 0;
+ } else {
+ /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */
+ g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay;
+ }
+ }
+
+ /* calculate g_DecaySlope_filt for every m multiplied by filter_a[m] */
+ for (m = 0; m < NO_ALLPASS_LINKS; m++)
+ {
+ g_DecaySlope_filt[m] = MUL_F(g_DecaySlope, filter_a[m]);
+ }
+
+
+ /* set delay indices */
+ temp_delay = ps->saved_delay;
+ for (n = 0; n < NO_ALLPASS_LINKS; n++)
+ temp_delay_ser[n] = ps->delay_buf_index_ser[n];
+
+ for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++)
+ {
+ complex_t tmp, tmp0, R0;
+
+ if (gr < ps->num_hybrid_groups)
+ {
+ /* hybrid filterbank input */
+ RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]);
+ IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]);
+ } else {
+ /* QMF filterbank input */
+ RE(inputLeft) = QMF_RE(X_left[n][sb]);
+ IM(inputLeft) = QMF_IM(X_left[n][sb]);
+ }
+
+ if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
+ {
+ /* delay */
+
+ /* never hybrid subbands here, always QMF subbands */
+ RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
+ IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]);
+ RE(R0) = RE(tmp);
+ IM(R0) = IM(tmp);
+ RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft);
+ IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft);
+ } else {
+ /* allpass filter */
+ uint8_t m;
+ complex_t Phi_Fract;
+
+ /* fetch parameters */
+ if (gr < ps->num_hybrid_groups)
+ {
+ /* select data from the hybrid subbands */
+ RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]);
+ IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]);
+
+ RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft);
+ IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft);
+
+ RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]);
+ IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]);
+ } else {
+ /* select data from the QMF subbands */
+ RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]);
+ IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]);
+
+ RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft);
+ IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft);
+
+ RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]);
+ IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]);
+ }
+
+ /* z^(-2) * Phi_Fract[k] */
+ ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract));
+
+ RE(R0) = RE(tmp);
+ IM(R0) = IM(tmp);
+ for (m = 0; m < NO_ALLPASS_LINKS; m++)
+ {
+ complex_t Q_Fract_allpass, tmp2;
+
+ /* fetch parameters */
+ if (gr < ps->num_hybrid_groups)
+ {
+ /* select data from the hybrid subbands */
+ RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
+ IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]);
+
+ if (ps->use34hybrid_bands)
+ {
+ RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]);
+ IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]);
+ } else {
+ RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]);
+ IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]);
+ }
+ } else {
+ /* select data from the QMF subbands */
+ RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
+ IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]);
+
+ RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]);
+ IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]);
+ }
+
+ /* delay by a fraction */
+ /* z^(-d(m)) * Q_Fract_allpass[k,m] */
+ ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass));
+
+ /* -a(m) * g_DecaySlope[k] */
+ RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0));
+ IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0));
+
+ /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */
+ RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp));
+ IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp));
+
+ /* store sample */
+ if (gr < ps->num_hybrid_groups)
+ {
+ RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
+ IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
+ } else {
+ RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2);
+ IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2);
+ }
+
+ /* store for next iteration (or as output value if last iteration) */
+ RE(R0) = RE(tmp);
+ IM(R0) = IM(tmp);
+ }
+ }
+
+ /* select b(k) for reading the transient ratio */
+ bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
+
+ /* duck if a past transient is found */
+ RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0));
+ IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0));
+
+ if (gr < ps->num_hybrid_groups)
+ {
+ /* hybrid */
+ QMF_RE(X_hybrid_right[n][sb]) = RE(R0);
+ QMF_IM(X_hybrid_right[n][sb]) = IM(R0);
+ } else {
+ /* QMF */
+ QMF_RE(X_right[n][sb]) = RE(R0);
+ QMF_IM(X_right[n][sb]) = IM(R0);
+ }
+
+ /* Update delay buffer index */
+ if (++temp_delay >= 2)
+ {
+ temp_delay = 0;
+ }
+
+ /* update delay indices */
+ if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups)
+ {
+ /* delay_D depends on the samplerate, it can hold the values 14 and 1 */
+ if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb])
+ {
+ ps->delay_buf_index_delay[sb] = 0;
+ }
+ }
+
+ for (m = 0; m < NO_ALLPASS_LINKS; m++)
+ {
+ if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m])
+ {
+ temp_delay_ser[m] = 0;
+ }
+ }
+ }
+ }
+ }
+
+ /* update delay indices */
+ ps->saved_delay = temp_delay;
+ for (m = 0; m < NO_ALLPASS_LINKS; m++)
+ ps->delay_buf_index_ser[m] = temp_delay_ser[m];
+}
+
+#ifdef FIXED_POINT
+#define step(shift) \
+ if ((0x40000000l >> shift) + root <= value) \
+ { \
+ value -= (0x40000000l >> shift) + root; \
+ root = (root >> 1) | (0x40000000l >> shift); \
+ } else { \
+ root = root >> 1; \
+ }
+
+/* fixed point square root approximation */
+static real_t ps_sqrt(real_t value)
+{
+ real_t root = 0;
+
+ step( 0); step( 2); step( 4); step( 6);
+ step( 8); step(10); step(12); step(14);
+ step(16); step(18); step(20); step(22);
+ step(24); step(26); step(28); step(30);
+
+ if (root < value)
+ ++root;
+
+ root <<= (REAL_BITS/2);
+
+ return root;
+}
+#else
+#define ps_sqrt(A) sqrt(A)
+#endif
+
+static const real_t ipdopd_cos_tab[] = {
+ FRAC_CONST(1.000000000000000),
+ FRAC_CONST(0.707106781186548),
+ FRAC_CONST(0.000000000000000),
+ FRAC_CONST(-0.707106781186547),
+ FRAC_CONST(-1.000000000000000),
+ FRAC_CONST(-0.707106781186548),
+ FRAC_CONST(-0.000000000000000),
+ FRAC_CONST(0.707106781186547),
+ FRAC_CONST(1.000000000000000)
+};
+
+static const real_t ipdopd_sin_tab[] = {
+ FRAC_CONST(0.000000000000000),
+ FRAC_CONST(0.707106781186547),
+ FRAC_CONST(1.000000000000000),
+ FRAC_CONST(0.707106781186548),
+ FRAC_CONST(0.000000000000000),
+ FRAC_CONST(-0.707106781186547),
+ FRAC_CONST(-1.000000000000000),
+ FRAC_CONST(-0.707106781186548),
+ FRAC_CONST(-0.000000000000000)
+};
+
+static real_t magnitude_c(complex_t c)
+{
+#ifdef FIXED_POINT
+#define ps_abs(A) (((A) > 0) ? (A) : (-(A)))
+#define ALPHA FRAC_CONST(0.948059448969)
+#define BETA FRAC_CONST(0.392699081699)
+
+ real_t abs_inphase = ps_abs(RE(c));
+ real_t abs_quadrature = ps_abs(IM(c));
+
+ if (abs_inphase > abs_quadrature) {
+ return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA);
+ } else {
+ return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA);
+ }
+#else
+ return sqrt(RE(c)*RE(c) + IM(c)*IM(c));
+#endif
+}
+
+static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64],
+ qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32])
+{
+ uint8_t n;
+ uint8_t gr;
+ uint8_t bk = 0;
+ uint8_t sb, maxsb;
+ uint8_t env;
+ uint8_t nr_ipdopd_par;
+ complex_t h11, h12, h21, h22;
+ complex_t H11, H12, H21, H22;
+ complex_t deltaH11, deltaH12, deltaH21, deltaH22;
+ complex_t tempLeft;
+ complex_t tempRight;
+ complex_t phaseLeft;
+ complex_t phaseRight;
+ real_t L;
+ const real_t *sf_iid;
+ uint8_t no_iid_steps;
+
+ if (ps->iid_mode >= 3)
+ {
+ no_iid_steps = 15;
+ sf_iid = sf_iid_fine;
+ } else {
+ no_iid_steps = 7;
+ sf_iid = sf_iid_normal;
+ }
+
+ if (ps->ipd_mode == 0 || ps->ipd_mode == 3)
+ {
+ nr_ipdopd_par = 11; /* resolution */
+ } else {
+ nr_ipdopd_par = ps->nr_ipdopd_par;
+ }
+
+ for (gr = 0; gr < ps->num_groups; gr++)
+ {
+ bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr];
+
+ /* use one channel per group in the subqmf domain */
+ maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1];
+
+ for (env = 0; env < ps->num_env; env++)
+ {
+ if (ps->icc_mode < 3)
+ {
+ /* type 'A' mixing as described in 8.6.4.6.2.1 */
+ real_t c_1, c_2;
+ real_t cosa, sina;
+ real_t cosb, sinb;
+ real_t ab1, ab2;
+ real_t ab3, ab4;
+
+ /*
+ c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0)));
+ c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0)));
+ alpha = 0.5 * acos(quant_rho[icc_index]);
+ beta = alpha * ( c_1 - c_2 ) / sqrt(2.0);
+ */
+
+ //printf("%d\n", ps->iid_index[env][bk]);
+
+ /* calculate the scalefactors c_1 and c_2 from the intensity differences */
+ c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]];
+ c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]];
+
+ /* calculate alpha and beta using the ICC parameters */
+ cosa = cos_alphas[ps->icc_index[env][bk]];
+ sina = sin_alphas[ps->icc_index[env][bk]];
+
+ if (ps->iid_mode >= 3)
+ {
+ if (ps->iid_index[env][bk] < 0)
+ {
+ cosb = cos_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sinb = -sin_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ } else {
+ cosb = cos_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sinb = sin_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ }
+ } else {
+ if (ps->iid_index[env][bk] < 0)
+ {
+ cosb = cos_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sinb = -sin_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ } else {
+ cosb = cos_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sinb = sin_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ }
+ }
+
+ ab1 = MUL_C(cosb, cosa);
+ ab2 = MUL_C(sinb, sina);
+ ab3 = MUL_C(sinb, cosa);
+ ab4 = MUL_C(cosb, sina);
+
+ /* h_xy: COEF */
+ RE(h11) = MUL_C(c_2, (ab1 - ab2));
+ RE(h12) = MUL_C(c_1, (ab1 + ab2));
+ RE(h21) = MUL_C(c_2, (ab3 + ab4));
+ RE(h22) = MUL_C(c_1, (ab3 - ab4));
+ } else {
+ /* type 'B' mixing as described in 8.6.4.6.2.2 */
+ real_t sina, cosa;
+ real_t cosg, sing;
+
+ /*
+ real_t c, rho, mu, alpha, gamma;
+ uint8_t i;
+
+ i = ps->iid_index[env][bk];
+ c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0);
+ rho = quant_rho[ps->icc_index[env][bk]];
+
+ if (rho == 0.0f && c == 1.)
+ {
+ alpha = (real_t)M_PI/4.0f;
+ rho = 0.05f;
+ } else {
+ if (rho <= 0.05f)
+ {
+ rho = 0.05f;
+ }
+ alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) );
+
+ if (alpha < 0.)
+ {
+ alpha += (real_t)M_PI/2.0f;
+ }
+ if (rho < 0.)
+ {
+ alpha += (real_t)M_PI;
+ }
+ }
+ mu = c+1.0f/c;
+ mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu);
+ gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu))));
+ */
+
+ if (ps->iid_mode >= 3)
+ {
+ uint8_t abs_iid = abs(ps->iid_index[env][bk]);
+
+ cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
+ cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]];
+ sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]];
+ } else {
+ uint8_t abs_iid = abs(ps->iid_index[env][bk]);
+
+ cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]];
+ sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]];
+ cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]];
+ sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]];
+ }
+
+ RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg));
+ RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg));
+ RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing));
+ RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing));
+ }
+
+ /* calculate phase rotation parameters H_xy */
+ /* note that the imaginary part of these parameters are only calculated when
+ IPD and OPD are enabled
+ */
+ if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
+ {
+ int8_t i;
+ real_t xy, pq, xypq;
+
+ /* ringbuffer index */
+ i = ps->phase_hist;
+
+ /* previous value */
+#ifdef FIXED_POINT
+ /* divide by 4, shift right 2 bits */
+ RE(tempLeft) = RE(ps->ipd_prev[bk][i]) >> 2;
+ IM(tempLeft) = IM(ps->ipd_prev[bk][i]) >> 2;
+ RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 2;
+ IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 2;
+#else
+ RE(tempLeft) = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
+ IM(tempLeft) = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25));
+ RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
+ IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25));
+#endif
+
+ /* save current value */
+ RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])];
+ IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])];
+ RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])];
+ IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])];
+
+ /* add current value */
+ RE(tempLeft) += RE(ps->ipd_prev[bk][i]);
+ IM(tempLeft) += IM(ps->ipd_prev[bk][i]);
+ RE(tempRight) += RE(ps->opd_prev[bk][i]);
+ IM(tempRight) += IM(ps->opd_prev[bk][i]);
+
+ /* ringbuffer index */
+ if (i == 0)
+ {
+ i = 2;
+ }
+ i--;
+
+ /* get value before previous */
+#ifdef FIXED_POINT
+ /* dividing by 2, shift right 1 bit */
+ RE(tempLeft) += (RE(ps->ipd_prev[bk][i]) >> 1);
+ IM(tempLeft) += (IM(ps->ipd_prev[bk][i]) >> 1);
+ RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 1);
+ IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 1);
+#else
+ RE(tempLeft) += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
+ IM(tempLeft) += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5));
+ RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
+ IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5));
+#endif
+
+#if 0 /* original code */
+ ipd = (float)atan2(IM(tempLeft), RE(tempLeft));
+ opd = (float)atan2(IM(tempRight), RE(tempRight));
+
+ /* phase rotation */
+ RE(phaseLeft) = (float)cos(opd);
+ IM(phaseLeft) = (float)sin(opd);
+ opd -= ipd;
+ RE(phaseRight) = (float)cos(opd);
+ IM(phaseRight) = (float)sin(opd);
+#else
+
+ // x = IM(tempLeft)
+ // y = RE(tempLeft)
+ // p = IM(tempRight)
+ // q = RE(tempRight)
+ // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y))
+ // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y))
+ // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
+ // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) );
+
+ xy = magnitude_c(tempRight);
+ pq = magnitude_c(tempLeft);
+
+ if (xy != 0)
+ {
+ RE(phaseLeft) = DIV_R(RE(tempRight), xy);
+ IM(phaseLeft) = DIV_R(IM(tempRight), xy);
+ } else {
+ RE(phaseLeft) = 0;
+ IM(phaseLeft) = 0;
+ }
+
+ xypq = MUL_R(xy, pq);
+
+ if (xypq != 0)
+ {
+ real_t tmp1 = MUL_R(RE(tempRight), RE(tempLeft)) + MUL_R(IM(tempRight), IM(tempLeft));
+ real_t tmp2 = MUL_R(IM(tempRight), RE(tempLeft)) - MUL_R(RE(tempRight), IM(tempLeft));
+
+ RE(phaseRight) = DIV_R(tmp1, xypq);
+ IM(phaseRight) = DIV_R(tmp2, xypq);
+ } else {
+ RE(phaseRight) = 0;
+ IM(phaseRight) = 0;
+ }
+
+#endif
+
+ /* MUL_F(COEF, REAL) = COEF */
+ IM(h11) = MUL_R(RE(h11), IM(phaseLeft));
+ IM(h12) = MUL_R(RE(h12), IM(phaseRight));
+ IM(h21) = MUL_R(RE(h21), IM(phaseLeft));
+ IM(h22) = MUL_R(RE(h22), IM(phaseRight));
+
+ RE(h11) = MUL_R(RE(h11), RE(phaseLeft));
+ RE(h12) = MUL_R(RE(h12), RE(phaseRight));
+ RE(h21) = MUL_R(RE(h21), RE(phaseLeft));
+ RE(h22) = MUL_R(RE(h22), RE(phaseRight));
+ }
+
+ /* length of the envelope n_e+1 - n_e (in time samples) */
+ /* 0 < L <= 32: integer */
+ L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]);
+
+ /* obtain final H_xy by means of linear interpolation */
+ RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L;
+ RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L;
+ RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L;
+ RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L;
+
+ RE(H11) = RE(ps->h11_prev[gr]);
+ RE(H12) = RE(ps->h12_prev[gr]);
+ RE(H21) = RE(ps->h21_prev[gr]);
+ RE(H22) = RE(ps->h22_prev[gr]);
+
+ RE(ps->h11_prev[gr]) = RE(h11);
+ RE(ps->h12_prev[gr]) = RE(h12);
+ RE(ps->h21_prev[gr]) = RE(h21);
+ RE(ps->h22_prev[gr]) = RE(h22);
+
+ /* only calculate imaginary part when needed */
+ if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
+ {
+ /* obtain final H_xy by means of linear interpolation */
+ IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L;
+ IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L;
+ IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L;
+ IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L;
+
+ IM(H11) = IM(ps->h11_prev[gr]);
+ IM(H12) = IM(ps->h12_prev[gr]);
+ IM(H21) = IM(ps->h21_prev[gr]);
+ IM(H22) = IM(ps->h22_prev[gr]);
+
+ if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0)
+ {
+ IM(deltaH11) = -IM(deltaH11);
+ IM(deltaH12) = -IM(deltaH12);
+ IM(deltaH21) = -IM(deltaH21);
+ IM(deltaH22) = -IM(deltaH22);
+
+ IM(H11) = -IM(H11);
+ IM(H12) = -IM(H12);
+ IM(H21) = -IM(H21);
+ IM(H22) = -IM(H22);
+ }
+
+ IM(ps->h11_prev[gr]) = IM(h11);
+ IM(ps->h12_prev[gr]) = IM(h12);
+ IM(ps->h21_prev[gr]) = IM(h21);
+ IM(ps->h22_prev[gr]) = IM(h22);
+ }
+
+ /* apply H_xy to the current envelope band of the decorrelated subband */
+ for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++)
+ {
+ /* addition finalises the interpolation over every n */
+ RE(H11) += RE(deltaH11);
+ RE(H12) += RE(deltaH12);
+ RE(H21) += RE(deltaH21);
+ RE(H22) += RE(deltaH22);
+ if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
+ {
+ IM(H11) += IM(deltaH11);
+ IM(H12) += IM(deltaH12);
+ IM(H21) += IM(deltaH21);
+ IM(H22) += IM(deltaH22);
+ }
+
+ /* channel is an alias to the subband */
+ for (sb = ps->group_border[gr]; sb < maxsb; sb++)
+ {
+ complex_t inLeft, inRight;
+
+ /* load decorrelated samples */
+ if (gr < ps->num_hybrid_groups)
+ {
+ RE(inLeft) = RE(X_hybrid_left[n][sb]);
+ IM(inLeft) = IM(X_hybrid_left[n][sb]);
+ RE(inRight) = RE(X_hybrid_right[n][sb]);
+ IM(inRight) = IM(X_hybrid_right[n][sb]);
+ } else {
+ RE(inLeft) = RE(X_left[n][sb]);
+ IM(inLeft) = IM(X_left[n][sb]);
+ RE(inRight) = RE(X_right[n][sb]);
+ IM(inRight) = IM(X_right[n][sb]);
+ }
+
+ /* apply mixing */
+ RE(tempLeft) = MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight));
+ IM(tempLeft) = MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight));
+ RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight));
+ IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight));
+
+ /* only perform imaginary operations when needed */
+ if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par))
+ {
+ /* apply rotation */
+ RE(tempLeft) -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight));
+ IM(tempLeft) += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight));
+ RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight));
+ IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight));
+ }
+
+ /* store final samples */
+ if (gr < ps->num_hybrid_groups)
+ {
+ RE(X_hybrid_left[n][sb]) = RE(tempLeft);
+ IM(X_hybrid_left[n][sb]) = IM(tempLeft);
+ RE(X_hybrid_right[n][sb]) = RE(tempRight);
+ IM(X_hybrid_right[n][sb]) = IM(tempRight);
+ } else {
+ RE(X_left[n][sb]) = RE(tempLeft);
+ IM(X_left[n][sb]) = IM(tempLeft);
+ RE(X_right[n][sb]) = RE(tempRight);
+ IM(X_right[n][sb]) = IM(tempRight);
+ }
+ }
+ }
+
+ /* shift phase smoother's circular buffer index */
+ ps->phase_hist++;
+ if (ps->phase_hist == 2)
+ {
+ ps->phase_hist = 0;
+ }
+ }
+ }
+}
+
+void ps_free(ps_info *ps)
+{
+ /* free hybrid filterbank structures */
+ hybrid_free(ps->hyb);
+
+ faad_free(ps);
+}
+
+ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate)
+{
+ uint8_t i;
+ uint8_t short_delay_band;
+
+ ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info));
+ memset(ps, 0, sizeof(ps_info));
+
+ ps->hyb = hybrid_init(numTimeSlotsRate);
+ ps->numTimeSlotsRate = numTimeSlotsRate;
+
+ ps->ps_data_available = 0;
+
+ /* delay stuff*/
+ ps->saved_delay = 0;
+
+ for (i = 0; i < 64; i++)
+ {
+ ps->delay_buf_index_delay[i] = 0;
+ }
+
+ for (i = 0; i < NO_ALLPASS_LINKS; i++)
+ {
+ ps->delay_buf_index_ser[i] = 0;
+#ifdef PARAM_32KHZ
+ if (sr_index <= 5) /* >= 32 kHz*/
+ {
+ ps->num_sample_delay_ser[i] = delay_length_d[1][i];
+ } else {
+ ps->num_sample_delay_ser[i] = delay_length_d[0][i];
+ }
+#else
+ /* THESE ARE CONSTANTS NOW */
+ ps->num_sample_delay_ser[i] = delay_length_d[i];
+#endif
+ }
+
+#ifdef PARAM_32KHZ
+ if (sr_index <= 5) /* >= 32 kHz*/
+ {
+ short_delay_band = 35;
+ ps->nr_allpass_bands = 22;
+ ps->alpha_decay = FRAC_CONST(0.76592833836465);
+ ps->alpha_smooth = FRAC_CONST(0.25);
+ } else {
+ short_delay_band = 64;
+ ps->nr_allpass_bands = 45;
+ ps->alpha_decay = FRAC_CONST(0.58664621951003);
+ ps->alpha_smooth = FRAC_CONST(0.6);
+ }
+#else
+ /* THESE ARE CONSTANTS NOW */
+ short_delay_band = 35;
+ ps->nr_allpass_bands = 22;
+ ps->alpha_decay = FRAC_CONST(0.76592833836465);
+ ps->alpha_smooth = FRAC_CONST(0.25);
+#endif
+
+ /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */
+ for (i = 0; i < short_delay_band; i++)
+ {
+ ps->delay_D[i] = 14;
+ }
+ for (i = short_delay_band; i < 64; i++)
+ {
+ ps->delay_D[i] = 1;
+ }
+
+ /* mixing and phase */
+ for (i = 0; i < 50; i++)
+ {
+ RE(ps->h11_prev[i]) = 1;
+ IM(ps->h12_prev[i]) = 1;
+ RE(ps->h11_prev[i]) = 1;
+ IM(ps->h12_prev[i]) = 1;
+ }
+
+ ps->phase_hist = 0;
+
+ for (i = 0; i < 20; i++)
+ {
+ RE(ps->ipd_prev[i][0]) = 0;
+ IM(ps->ipd_prev[i][0]) = 0;
+ RE(ps->ipd_prev[i][1]) = 0;
+ IM(ps->ipd_prev[i][1]) = 0;
+ RE(ps->opd_prev[i][0]) = 0;
+ IM(ps->opd_prev[i][0]) = 0;
+ RE(ps->opd_prev[i][1]) = 0;
+ IM(ps->opd_prev[i][1]) = 0;
+ }
+
+ return ps;
+}
+
+/* main Parametric Stereo decoding function */
+uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64])
+{
+ qmf_t X_hybrid_left[32][32] = {{0}};
+ qmf_t X_hybrid_right[32][32] = {{0}};
+
+ /* delta decoding of the bitstream data */
+ ps_data_decode(ps);
+
+ /* set up some parameters depending on filterbank type */
+ if (ps->use34hybrid_bands)
+ {
+ ps->group_border = (uint8_t*)group_border34;
+ ps->map_group2bk = (uint16_t*)map_group2bk34;
+ ps->num_groups = 32+18;
+ ps->num_hybrid_groups = 32;
+ ps->nr_par_bands = 34;
+ ps->decay_cutoff = 5;
+ } else {
+ ps->group_border = (uint8_t*)group_border20;
+ ps->map_group2bk = (uint16_t*)map_group2bk20;
+ ps->num_groups = 10+12;
+ ps->num_hybrid_groups = 10;
+ ps->nr_par_bands = 20;
+ ps->decay_cutoff = 3;
+ }
+
+ /* Perform further analysis on the lowest subbands to get a higher
+ * frequency resolution
+ */
+ hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
+ ps->use34hybrid_bands, ps->numTimeSlotsRate);
+
+ /* decorrelate mono signal */
+ ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
+
+ /* apply mixing and phase parameters */
+ ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right);
+
+ /* hybrid synthesis, to rebuild the SBR QMF matrices */
+ hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left,
+ ps->use34hybrid_bands, ps->numTimeSlotsRate);
+
+ hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right,
+ ps->use34hybrid_bands, ps->numTimeSlotsRate);
+
+ return 0;
+}
+
+#endif
+