From a68df043bfbc7f8f38332143577877846631eca4 Mon Sep 17 00:00:00 2001 From: MichaÅ‚ CichoÅ„ Date: Tue, 25 Aug 2015 19:58:37 +0200 Subject: Update build environment - remove faad2 - remove mad - remove polarssl - remove pthreads - add libcurl - add vtparse with UTF8 support - update project to use Visual Studio 2015 --- faad2/src/libfaad/mdct.c | 301 ----------------------------------------------- 1 file changed, 301 deletions(-) delete mode 100644 faad2/src/libfaad/mdct.c (limited to 'faad2/src/libfaad/mdct.c') diff --git a/faad2/src/libfaad/mdct.c b/faad2/src/libfaad/mdct.c deleted file mode 100644 index 6c4f584..0000000 --- a/faad2/src/libfaad/mdct.c +++ /dev/null @@ -1,301 +0,0 @@ -/* -** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding -** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com -** -** This program is free software; you can redistribute it and/or modify -** it under the terms of the GNU General Public License as published by -** the Free Software Foundation; either version 2 of the License, or -** (at your option) any later version. -** -** This program is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU General Public License for more details. -** -** You should have received a copy of the GNU General Public License -** along with this program; if not, write to the Free Software -** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -** -** Any non-GPL usage of this software or parts of this software is strictly -** forbidden. -** -** The "appropriate copyright message" mentioned in section 2c of the GPLv2 -** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" -** -** Commercial non-GPL licensing of this software is possible. -** For more info contact Nero AG through Mpeg4AAClicense@nero.com. -** -** $Id: mdct.c,v 1.47 2007/11/01 12:33:31 menno Exp $ -**/ - -/* - * Fast (I)MDCT Implementation using (I)FFT ((Inverse) Fast Fourier Transform) - * and consists of three steps: pre-(I)FFT complex multiplication, complex - * (I)FFT, post-(I)FFT complex multiplication, - * - * As described in: - * P. Duhamel, Y. Mahieux, and J.P. Petit, "A Fast Algorithm for the - * Implementation of Filter Banks Based on 'Time Domain Aliasing - * Cancellation’," IEEE Proc. on ICASSP‘91, 1991, pp. 2209-2212. - * - * - * As of April 6th 2002 completely rewritten. - * This (I)MDCT can now be used for any data size n, where n is divisible by 8. - * - */ - -#include "common.h" -#include "structs.h" - -#include -#ifdef _WIN32_WCE -#define assert(x) -#else -#include -#endif - -#include "cfft.h" -#include "mdct.h" -#include "mdct_tab.h" - - -mdct_info *faad_mdct_init(uint16_t N) -{ - mdct_info *mdct = (mdct_info*)faad_malloc(sizeof(mdct_info)); - - assert(N % 8 == 0); - - mdct->N = N; - - /* NOTE: For "small framelengths" in FIXED_POINT the coefficients need to be - * scaled by sqrt("(nearest power of 2) > N" / N) */ - - /* RE(mdct->sincos[k]) = scale*(real_t)(cos(2.0*M_PI*(k+1./8.) / (real_t)N)); - * IM(mdct->sincos[k]) = scale*(real_t)(sin(2.0*M_PI*(k+1./8.) / (real_t)N)); */ - /* scale is 1 for fixed point, sqrt(N) for floating point */ - switch (N) - { - case 2048: mdct->sincos = (complex_t*)mdct_tab_2048; break; - case 256: mdct->sincos = (complex_t*)mdct_tab_256; break; -#ifdef LD_DEC - case 1024: mdct->sincos = (complex_t*)mdct_tab_1024; break; -#endif -#ifdef ALLOW_SMALL_FRAMELENGTH - case 1920: mdct->sincos = (complex_t*)mdct_tab_1920; break; - case 240: mdct->sincos = (complex_t*)mdct_tab_240; break; -#ifdef LD_DEC - case 960: mdct->sincos = (complex_t*)mdct_tab_960; break; -#endif -#endif -#ifdef SSR_DEC - case 512: mdct->sincos = (complex_t*)mdct_tab_512; break; - case 64: mdct->sincos = (complex_t*)mdct_tab_64; break; -#endif - } - - /* initialise fft */ - mdct->cfft = cffti(N/4); - -#ifdef PROFILE - mdct->cycles = 0; - mdct->fft_cycles = 0; -#endif - - return mdct; -} - -void faad_mdct_end(mdct_info *mdct) -{ - if (mdct != NULL) - { -#ifdef PROFILE - printf("MDCT[%.4d]: %I64d cycles\n", mdct->N, mdct->cycles); - printf("CFFT[%.4d]: %I64d cycles\n", mdct->N/4, mdct->fft_cycles); -#endif - - cfftu(mdct->cfft); - - faad_free(mdct); - } -} - -void faad_imdct(mdct_info *mdct, real_t *X_in, real_t *X_out) -{ - uint16_t k; - - complex_t x; -#ifdef ALLOW_SMALL_FRAMELENGTH -#ifdef FIXED_POINT - real_t scale, b_scale = 0; -#endif -#endif - ALIGN complex_t Z1[512]; - complex_t *sincos = mdct->sincos; - - uint16_t N = mdct->N; - uint16_t N2 = N >> 1; - uint16_t N4 = N >> 2; - uint16_t N8 = N >> 3; - -#ifdef PROFILE - int64_t count1, count2 = faad_get_ts(); -#endif - -#ifdef ALLOW_SMALL_FRAMELENGTH -#ifdef FIXED_POINT - /* detect non-power of 2 */ - if (N & (N-1)) - { - /* adjust scale for non-power of 2 MDCT */ - /* 2048/1920 */ - b_scale = 1; - scale = COEF_CONST(1.0666666666666667); - } -#endif -#endif - - /* pre-IFFT complex multiplication */ - for (k = 0; k < N4; k++) - { - ComplexMult(&IM(Z1[k]), &RE(Z1[k]), - X_in[2*k], X_in[N2 - 1 - 2*k], RE(sincos[k]), IM(sincos[k])); - } - -#ifdef PROFILE - count1 = faad_get_ts(); -#endif - - /* complex IFFT, any non-scaling FFT can be used here */ - cfftb(mdct->cfft, Z1); - -#ifdef PROFILE - count1 = faad_get_ts() - count1; -#endif - - /* post-IFFT complex multiplication */ - for (k = 0; k < N4; k++) - { - RE(x) = RE(Z1[k]); - IM(x) = IM(Z1[k]); - ComplexMult(&IM(Z1[k]), &RE(Z1[k]), - IM(x), RE(x), RE(sincos[k]), IM(sincos[k])); - -#ifdef ALLOW_SMALL_FRAMELENGTH -#ifdef FIXED_POINT - /* non-power of 2 MDCT scaling */ - if (b_scale) - { - RE(Z1[k]) = MUL_C(RE(Z1[k]), scale); - IM(Z1[k]) = MUL_C(IM(Z1[k]), scale); - } -#endif -#endif - } - - /* reordering */ - for (k = 0; k < N8; k+=2) - { - X_out[ 2*k] = IM(Z1[N8 + k]); - X_out[ 2 + 2*k] = IM(Z1[N8 + 1 + k]); - - X_out[ 1 + 2*k] = -RE(Z1[N8 - 1 - k]); - X_out[ 3 + 2*k] = -RE(Z1[N8 - 2 - k]); - - X_out[N4 + 2*k] = RE(Z1[ k]); - X_out[N4 + + 2 + 2*k] = RE(Z1[ 1 + k]); - - X_out[N4 + 1 + 2*k] = -IM(Z1[N4 - 1 - k]); - X_out[N4 + 3 + 2*k] = -IM(Z1[N4 - 2 - k]); - - X_out[N2 + 2*k] = RE(Z1[N8 + k]); - X_out[N2 + + 2 + 2*k] = RE(Z1[N8 + 1 + k]); - - X_out[N2 + 1 + 2*k] = -IM(Z1[N8 - 1 - k]); - X_out[N2 + 3 + 2*k] = -IM(Z1[N8 - 2 - k]); - - X_out[N2 + N4 + 2*k] = -IM(Z1[ k]); - X_out[N2 + N4 + 2 + 2*k] = -IM(Z1[ 1 + k]); - - X_out[N2 + N4 + 1 + 2*k] = RE(Z1[N4 - 1 - k]); - X_out[N2 + N4 + 3 + 2*k] = RE(Z1[N4 - 2 - k]); - } - -#ifdef PROFILE - count2 = faad_get_ts() - count2; - mdct->fft_cycles += count1; - mdct->cycles += (count2 - count1); -#endif -} - -#ifdef LTP_DEC -void faad_mdct(mdct_info *mdct, real_t *X_in, real_t *X_out) -{ - uint16_t k; - - complex_t x; - ALIGN complex_t Z1[512]; - complex_t *sincos = mdct->sincos; - - uint16_t N = mdct->N; - uint16_t N2 = N >> 1; - uint16_t N4 = N >> 2; - uint16_t N8 = N >> 3; - -#ifndef FIXED_POINT - real_t scale = REAL_CONST(N); -#else - real_t scale = REAL_CONST(4.0/N); -#endif - -#ifdef ALLOW_SMALL_FRAMELENGTH -#ifdef FIXED_POINT - /* detect non-power of 2 */ - if (N & (N-1)) - { - /* adjust scale for non-power of 2 MDCT */ - /* *= sqrt(2048/1920) */ - scale = MUL_C(scale, COEF_CONST(1.0327955589886444)); - } -#endif -#endif - - /* pre-FFT complex multiplication */ - for (k = 0; k < N8; k++) - { - uint16_t n = k << 1; - RE(x) = X_in[N - N4 - 1 - n] + X_in[N - N4 + n]; - IM(x) = X_in[ N4 + n] - X_in[ N4 - 1 - n]; - - ComplexMult(&RE(Z1[k]), &IM(Z1[k]), - RE(x), IM(x), RE(sincos[k]), IM(sincos[k])); - - RE(Z1[k]) = MUL_R(RE(Z1[k]), scale); - IM(Z1[k]) = MUL_R(IM(Z1[k]), scale); - - RE(x) = X_in[N2 - 1 - n] - X_in[ n]; - IM(x) = X_in[N2 + n] + X_in[N - 1 - n]; - - ComplexMult(&RE(Z1[k + N8]), &IM(Z1[k + N8]), - RE(x), IM(x), RE(sincos[k + N8]), IM(sincos[k + N8])); - - RE(Z1[k + N8]) = MUL_R(RE(Z1[k + N8]), scale); - IM(Z1[k + N8]) = MUL_R(IM(Z1[k + N8]), scale); - } - - /* complex FFT, any non-scaling FFT can be used here */ - cfftf(mdct->cfft, Z1); - - /* post-FFT complex multiplication */ - for (k = 0; k < N4; k++) - { - uint16_t n = k << 1; - ComplexMult(&RE(x), &IM(x), - RE(Z1[k]), IM(Z1[k]), RE(sincos[k]), IM(sincos[k])); - - X_out[ n] = -RE(x); - X_out[N2 - 1 - n] = IM(x); - X_out[N2 + n] = -IM(x); - X_out[N - 1 - n] = RE(x); - } -} -#endif -- cgit v1.2.3