From a68df043bfbc7f8f38332143577877846631eca4 Mon Sep 17 00:00:00 2001 From: Michał Cichoń Date: Tue, 25 Aug 2015 19:58:37 +0200 Subject: Update build environment - remove faad2 - remove mad - remove polarssl - remove pthreads - add libcurl - add vtparse with UTF8 support - update project to use Visual Studio 2015 --- faad2/src/libfaad/ps_dec.c | 2013 -------------------------------------------- 1 file changed, 2013 deletions(-) delete mode 100644 faad2/src/libfaad/ps_dec.c (limited to 'faad2/src/libfaad/ps_dec.c') diff --git a/faad2/src/libfaad/ps_dec.c b/faad2/src/libfaad/ps_dec.c deleted file mode 100644 index c493fde..0000000 --- a/faad2/src/libfaad/ps_dec.c +++ /dev/null @@ -1,2013 +0,0 @@ -/* -** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding -** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com -** -** This program is free software; you can redistribute it and/or modify -** it under the terms of the GNU General Public License as published by -** the Free Software Foundation; either version 2 of the License, or -** (at your option) any later version. -** -** This program is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU General Public License for more details. -** -** You should have received a copy of the GNU General Public License -** along with this program; if not, write to the Free Software -** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -** -** Any non-GPL usage of this software or parts of this software is strictly -** forbidden. -** -** The "appropriate copyright message" mentioned in section 2c of the GPLv2 -** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" -** -** Commercial non-GPL licensing of this software is possible. -** For more info contact Nero AG through Mpeg4AAClicense@nero.com. -** -** $Id: ps_dec.c,v 1.16 2009/01/26 22:32:31 menno Exp $ -**/ - -#include "common.h" - -#ifdef PS_DEC - -#include -#include "ps_dec.h" -#include "ps_tables.h" - -/* constants */ -#define NEGATE_IPD_MASK (0x1000) -#define DECAY_SLOPE FRAC_CONST(0.05) -#define COEF_SQRT2 COEF_CONST(1.4142135623731) - -/* tables */ -/* filters are mirrored in coef 6, second half left out */ -static const real_t p8_13_20[7] = -{ - FRAC_CONST(0.00746082949812), - FRAC_CONST(0.02270420949825), - FRAC_CONST(0.04546865930473), - FRAC_CONST(0.07266113929591), - FRAC_CONST(0.09885108575264), - FRAC_CONST(0.11793710567217), - FRAC_CONST(0.125) -}; - -static const real_t p2_13_20[7] = -{ - FRAC_CONST(0.0), - FRAC_CONST(0.01899487526049), - FRAC_CONST(0.0), - FRAC_CONST(-0.07293139167538), - FRAC_CONST(0.0), - FRAC_CONST(0.30596630545168), - FRAC_CONST(0.5) -}; - -static const real_t p12_13_34[7] = -{ - FRAC_CONST(0.04081179924692), - FRAC_CONST(0.03812810994926), - FRAC_CONST(0.05144908135699), - FRAC_CONST(0.06399831151592), - FRAC_CONST(0.07428313801106), - FRAC_CONST(0.08100347892914), - FRAC_CONST(0.08333333333333) -}; - -static const real_t p8_13_34[7] = -{ - FRAC_CONST(0.01565675600122), - FRAC_CONST(0.03752716391991), - FRAC_CONST(0.05417891378782), - FRAC_CONST(0.08417044116767), - FRAC_CONST(0.10307344158036), - FRAC_CONST(0.12222452249753), - FRAC_CONST(0.125) -}; - -static const real_t p4_13_34[7] = -{ - FRAC_CONST(-0.05908211155639), - FRAC_CONST(-0.04871498374946), - FRAC_CONST(0.0), - FRAC_CONST(0.07778723915851), - FRAC_CONST(0.16486303567403), - FRAC_CONST(0.23279856662996), - FRAC_CONST(0.25) -}; - -#ifdef PARAM_32KHZ -static const uint8_t delay_length_d[2][NO_ALLPASS_LINKS] = { - { 1, 2, 3 } /* d_24kHz */, - { 3, 4, 5 } /* d_48kHz */ -}; -#else -static const uint8_t delay_length_d[NO_ALLPASS_LINKS] = { - 3, 4, 5 /* d_48kHz */ -}; -#endif -static const real_t filter_a[NO_ALLPASS_LINKS] = { /* a(m) = exp(-d_48kHz(m)/7) */ - FRAC_CONST(0.65143905753106), - FRAC_CONST(0.56471812200776), - FRAC_CONST(0.48954165955695) -}; - -static const uint8_t group_border20[10+12 + 1] = -{ - 6, 7, 0, 1, 2, 3, /* 6 subqmf subbands */ - 9, 8, /* 2 subqmf subbands */ - 10, 11, /* 2 subqmf subbands */ - 3, 4, 5, 6, 7, 8, 9, 11, 14, 18, 23, 35, 64 -}; - -static const uint8_t group_border34[32+18 + 1] = -{ - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, /* 12 subqmf subbands */ - 12, 13, 14, 15, 16, 17, 18, 19, /* 8 subqmf subbands */ - 20, 21, 22, 23, /* 4 subqmf subbands */ - 24, 25, 26, 27, /* 4 subqmf subbands */ - 28, 29, 30, 31, /* 4 subqmf subbands */ - 32-27, 33-27, 34-27, 35-27, 36-27, 37-27, 38-27, 40-27, 42-27, 44-27, 46-27, 48-27, 51-27, 54-27, 57-27, 60-27, 64-27, 68-27, 91-27 -}; - -static const uint16_t map_group2bk20[10+12] = -{ - (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0), - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 -}; - -static const uint16_t map_group2bk34[32+18] = -{ - 0, 1, 2, 3, 4, 5, 6, 6, 7, (NEGATE_IPD_MASK | 2), (NEGATE_IPD_MASK | 1), (NEGATE_IPD_MASK | 0), - 10, 10, 4, 5, 6, 7, 8, 9, - 10, 11, 12, 9, - 14, 11, 12, 13, - 14, 15, 16, 13, - 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 -}; - -/* type definitions */ -typedef struct -{ - uint8_t frame_len; - uint8_t resolution20[3]; - uint8_t resolution34[5]; - - qmf_t *work; - qmf_t **buffer; - qmf_t **temp; -} hyb_info; - -/* static function declarations */ -static void ps_data_decode(ps_info *ps); -static hyb_info *hybrid_init(uint8_t numTimeSlotsRate); -static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid); -static void INLINE DCT3_4_unscaled(real_t *y, real_t *x); -static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid); -static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32], - uint8_t use34, uint8_t numTimeSlotsRate); -static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32], - uint8_t use34, uint8_t numTimeSlotsRate); -static int8_t delta_clip(int8_t i, int8_t min, int8_t max); -static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev, - uint8_t dt_flag, uint8_t nr_par, uint8_t stride, - int8_t min_index, int8_t max_index); -static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev, - uint8_t dt_flag, uint8_t nr_par, uint8_t stride, - int8_t and_modulo); -static void map20indexto34(int8_t *index, uint8_t bins); -#ifdef PS_LOW_POWER -static void map34indexto20(int8_t *index, uint8_t bins); -#endif -static void ps_data_decode(ps_info *ps); -static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64], - qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]); -static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64], - qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]); - -/* */ - - -static hyb_info *hybrid_init(uint8_t numTimeSlotsRate) -{ - uint8_t i; - - hyb_info *hyb = (hyb_info*)faad_malloc(sizeof(hyb_info)); - - hyb->resolution34[0] = 12; - hyb->resolution34[1] = 8; - hyb->resolution34[2] = 4; - hyb->resolution34[3] = 4; - hyb->resolution34[4] = 4; - - hyb->resolution20[0] = 8; - hyb->resolution20[1] = 2; - hyb->resolution20[2] = 2; - - hyb->frame_len = numTimeSlotsRate; - - hyb->work = (qmf_t*)faad_malloc((hyb->frame_len+12) * sizeof(qmf_t)); - memset(hyb->work, 0, (hyb->frame_len+12) * sizeof(qmf_t)); - - hyb->buffer = (qmf_t**)faad_malloc(5 * sizeof(qmf_t*)); - for (i = 0; i < 5; i++) - { - hyb->buffer[i] = (qmf_t*)faad_malloc(hyb->frame_len * sizeof(qmf_t)); - memset(hyb->buffer[i], 0, hyb->frame_len * sizeof(qmf_t)); - } - - hyb->temp = (qmf_t**)faad_malloc(hyb->frame_len * sizeof(qmf_t*)); - for (i = 0; i < hyb->frame_len; i++) - { - hyb->temp[i] = (qmf_t*)faad_malloc(12 /*max*/ * sizeof(qmf_t)); - } - - return hyb; -} - -static void hybrid_free(hyb_info *hyb) -{ - uint8_t i; - - if (!hyb) return; - - if (hyb->work) - faad_free(hyb->work); - - for (i = 0; i < 5; i++) - { - if (hyb->buffer[i]) - faad_free(hyb->buffer[i]); - } - if (hyb->buffer) - faad_free(hyb->buffer); - - for (i = 0; i < hyb->frame_len; i++) - { - if (hyb->temp[i]) - faad_free(hyb->temp[i]); - } - if (hyb->temp) - faad_free(hyb->temp); - - faad_free(hyb); -} - -/* real filter, size 2 */ -static void channel_filter2(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid) -{ - uint8_t i; - - for (i = 0; i < frame_len; i++) - { - real_t r0 = MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))); - real_t r1 = MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))); - real_t r2 = MUL_F(filter[2],(QMF_RE(buffer[2+i]) + QMF_RE(buffer[10+i]))); - real_t r3 = MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i]))); - real_t r4 = MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i]))); - real_t r5 = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i]))); - real_t r6 = MUL_F(filter[6],QMF_RE(buffer[6+i])); - real_t i0 = MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))); - real_t i1 = MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))); - real_t i2 = MUL_F(filter[2],(QMF_IM(buffer[2+i]) + QMF_IM(buffer[10+i]))); - real_t i3 = MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i]))); - real_t i4 = MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i]))); - real_t i5 = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i]))); - real_t i6 = MUL_F(filter[6],QMF_IM(buffer[6+i])); - - /* q = 0 */ - QMF_RE(X_hybrid[i][0]) = r0 + r1 + r2 + r3 + r4 + r5 + r6; - QMF_IM(X_hybrid[i][0]) = i0 + i1 + i2 + i3 + i4 + i5 + i6; - - /* q = 1 */ - QMF_RE(X_hybrid[i][1]) = r0 - r1 + r2 - r3 + r4 - r5 + r6; - QMF_IM(X_hybrid[i][1]) = i0 - i1 + i2 - i3 + i4 - i5 + i6; - } -} - -/* complex filter, size 4 */ -static void channel_filter4(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid) -{ - uint8_t i; - real_t input_re1[2], input_re2[2], input_im1[2], input_im2[2]; - - for (i = 0; i < frame_len; i++) - { - input_re1[0] = -MUL_F(filter[2], (QMF_RE(buffer[i+2]) + QMF_RE(buffer[i+10]))) + - MUL_F(filter[6], QMF_RE(buffer[i+6])); - input_re1[1] = MUL_F(FRAC_CONST(-0.70710678118655), - (MUL_F(filter[1], (QMF_RE(buffer[i+1]) + QMF_RE(buffer[i+11]))) + - MUL_F(filter[3], (QMF_RE(buffer[i+3]) + QMF_RE(buffer[i+9]))) - - MUL_F(filter[5], (QMF_RE(buffer[i+5]) + QMF_RE(buffer[i+7]))))); - - input_im1[0] = MUL_F(filter[0], (QMF_IM(buffer[i+0]) - QMF_IM(buffer[i+12]))) - - MUL_F(filter[4], (QMF_IM(buffer[i+4]) - QMF_IM(buffer[i+8]))); - input_im1[1] = MUL_F(FRAC_CONST(0.70710678118655), - (MUL_F(filter[1], (QMF_IM(buffer[i+1]) - QMF_IM(buffer[i+11]))) - - MUL_F(filter[3], (QMF_IM(buffer[i+3]) - QMF_IM(buffer[i+9]))) - - MUL_F(filter[5], (QMF_IM(buffer[i+5]) - QMF_IM(buffer[i+7]))))); - - input_re2[0] = MUL_F(filter[0], (QMF_RE(buffer[i+0]) - QMF_RE(buffer[i+12]))) - - MUL_F(filter[4], (QMF_RE(buffer[i+4]) - QMF_RE(buffer[i+8]))); - input_re2[1] = MUL_F(FRAC_CONST(0.70710678118655), - (MUL_F(filter[1], (QMF_RE(buffer[i+1]) - QMF_RE(buffer[i+11]))) - - MUL_F(filter[3], (QMF_RE(buffer[i+3]) - QMF_RE(buffer[i+9]))) - - MUL_F(filter[5], (QMF_RE(buffer[i+5]) - QMF_RE(buffer[i+7]))))); - - input_im2[0] = -MUL_F(filter[2], (QMF_IM(buffer[i+2]) + QMF_IM(buffer[i+10]))) + - MUL_F(filter[6], QMF_IM(buffer[i+6])); - input_im2[1] = MUL_F(FRAC_CONST(-0.70710678118655), - (MUL_F(filter[1], (QMF_IM(buffer[i+1]) + QMF_IM(buffer[i+11]))) + - MUL_F(filter[3], (QMF_IM(buffer[i+3]) + QMF_IM(buffer[i+9]))) - - MUL_F(filter[5], (QMF_IM(buffer[i+5]) + QMF_IM(buffer[i+7]))))); - - /* q == 0 */ - QMF_RE(X_hybrid[i][0]) = input_re1[0] + input_re1[1] + input_im1[0] + input_im1[1]; - QMF_IM(X_hybrid[i][0]) = -input_re2[0] - input_re2[1] + input_im2[0] + input_im2[1]; - - /* q == 1 */ - QMF_RE(X_hybrid[i][1]) = input_re1[0] - input_re1[1] - input_im1[0] + input_im1[1]; - QMF_IM(X_hybrid[i][1]) = input_re2[0] - input_re2[1] + input_im2[0] - input_im2[1]; - - /* q == 2 */ - QMF_RE(X_hybrid[i][2]) = input_re1[0] - input_re1[1] + input_im1[0] - input_im1[1]; - QMF_IM(X_hybrid[i][2]) = -input_re2[0] + input_re2[1] + input_im2[0] - input_im2[1]; - - /* q == 3 */ - QMF_RE(X_hybrid[i][3]) = input_re1[0] + input_re1[1] - input_im1[0] - input_im1[1]; - QMF_IM(X_hybrid[i][3]) = input_re2[0] + input_re2[1] + input_im2[0] + input_im2[1]; - } -} - -static void INLINE DCT3_4_unscaled(real_t *y, real_t *x) -{ - real_t f0, f1, f2, f3, f4, f5, f6, f7, f8; - - f0 = MUL_F(x[2], FRAC_CONST(0.7071067811865476)); - f1 = x[0] - f0; - f2 = x[0] + f0; - f3 = x[1] + x[3]; - f4 = MUL_C(x[1], COEF_CONST(1.3065629648763766)); - f5 = MUL_F(f3, FRAC_CONST(-0.9238795325112866)); - f6 = MUL_F(x[3], FRAC_CONST(-0.5411961001461967)); - f7 = f4 + f5; - f8 = f6 - f5; - y[3] = f2 - f8; - y[0] = f2 + f8; - y[2] = f1 - f7; - y[1] = f1 + f7; -} - -/* complex filter, size 8 */ -static void channel_filter8(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid) -{ - uint8_t i, n; - real_t input_re1[4], input_re2[4], input_im1[4], input_im2[4]; - real_t x[4]; - - for (i = 0; i < frame_len; i++) - { - input_re1[0] = MUL_F(filter[6],QMF_RE(buffer[6+i])); - input_re1[1] = MUL_F(filter[5],(QMF_RE(buffer[5+i]) + QMF_RE(buffer[7+i]))); - input_re1[2] = -MUL_F(filter[0],(QMF_RE(buffer[0+i]) + QMF_RE(buffer[12+i]))) + MUL_F(filter[4],(QMF_RE(buffer[4+i]) + QMF_RE(buffer[8+i]))); - input_re1[3] = -MUL_F(filter[1],(QMF_RE(buffer[1+i]) + QMF_RE(buffer[11+i]))) + MUL_F(filter[3],(QMF_RE(buffer[3+i]) + QMF_RE(buffer[9+i]))); - - input_im1[0] = MUL_F(filter[5],(QMF_IM(buffer[7+i]) - QMF_IM(buffer[5+i]))); - input_im1[1] = MUL_F(filter[0],(QMF_IM(buffer[12+i]) - QMF_IM(buffer[0+i]))) + MUL_F(filter[4],(QMF_IM(buffer[8+i]) - QMF_IM(buffer[4+i]))); - input_im1[2] = MUL_F(filter[1],(QMF_IM(buffer[11+i]) - QMF_IM(buffer[1+i]))) + MUL_F(filter[3],(QMF_IM(buffer[9+i]) - QMF_IM(buffer[3+i]))); - input_im1[3] = MUL_F(filter[2],(QMF_IM(buffer[10+i]) - QMF_IM(buffer[2+i]))); - - for (n = 0; n < 4; n++) - { - x[n] = input_re1[n] - input_im1[3-n]; - } - DCT3_4_unscaled(x, x); - QMF_RE(X_hybrid[i][7]) = x[0]; - QMF_RE(X_hybrid[i][5]) = x[2]; - QMF_RE(X_hybrid[i][3]) = x[3]; - QMF_RE(X_hybrid[i][1]) = x[1]; - - for (n = 0; n < 4; n++) - { - x[n] = input_re1[n] + input_im1[3-n]; - } - DCT3_4_unscaled(x, x); - QMF_RE(X_hybrid[i][6]) = x[1]; - QMF_RE(X_hybrid[i][4]) = x[3]; - QMF_RE(X_hybrid[i][2]) = x[2]; - QMF_RE(X_hybrid[i][0]) = x[0]; - - input_im2[0] = MUL_F(filter[6],QMF_IM(buffer[6+i])); - input_im2[1] = MUL_F(filter[5],(QMF_IM(buffer[5+i]) + QMF_IM(buffer[7+i]))); - input_im2[2] = -MUL_F(filter[0],(QMF_IM(buffer[0+i]) + QMF_IM(buffer[12+i]))) + MUL_F(filter[4],(QMF_IM(buffer[4+i]) + QMF_IM(buffer[8+i]))); - input_im2[3] = -MUL_F(filter[1],(QMF_IM(buffer[1+i]) + QMF_IM(buffer[11+i]))) + MUL_F(filter[3],(QMF_IM(buffer[3+i]) + QMF_IM(buffer[9+i]))); - - input_re2[0] = MUL_F(filter[5],(QMF_RE(buffer[7+i]) - QMF_RE(buffer[5+i]))); - input_re2[1] = MUL_F(filter[0],(QMF_RE(buffer[12+i]) - QMF_RE(buffer[0+i]))) + MUL_F(filter[4],(QMF_RE(buffer[8+i]) - QMF_RE(buffer[4+i]))); - input_re2[2] = MUL_F(filter[1],(QMF_RE(buffer[11+i]) - QMF_RE(buffer[1+i]))) + MUL_F(filter[3],(QMF_RE(buffer[9+i]) - QMF_RE(buffer[3+i]))); - input_re2[3] = MUL_F(filter[2],(QMF_RE(buffer[10+i]) - QMF_RE(buffer[2+i]))); - - for (n = 0; n < 4; n++) - { - x[n] = input_im2[n] + input_re2[3-n]; - } - DCT3_4_unscaled(x, x); - QMF_IM(X_hybrid[i][7]) = x[0]; - QMF_IM(X_hybrid[i][5]) = x[2]; - QMF_IM(X_hybrid[i][3]) = x[3]; - QMF_IM(X_hybrid[i][1]) = x[1]; - - for (n = 0; n < 4; n++) - { - x[n] = input_im2[n] - input_re2[3-n]; - } - DCT3_4_unscaled(x, x); - QMF_IM(X_hybrid[i][6]) = x[1]; - QMF_IM(X_hybrid[i][4]) = x[3]; - QMF_IM(X_hybrid[i][2]) = x[2]; - QMF_IM(X_hybrid[i][0]) = x[0]; - } -} - -static void INLINE DCT3_6_unscaled(real_t *y, real_t *x) -{ - real_t f0, f1, f2, f3, f4, f5, f6, f7; - - f0 = MUL_F(x[3], FRAC_CONST(0.70710678118655)); - f1 = x[0] + f0; - f2 = x[0] - f0; - f3 = MUL_F((x[1] - x[5]), FRAC_CONST(0.70710678118655)); - f4 = MUL_F(x[2], FRAC_CONST(0.86602540378444)) + MUL_F(x[4], FRAC_CONST(0.5)); - f5 = f4 - x[4]; - f6 = MUL_F(x[1], FRAC_CONST(0.96592582628907)) + MUL_F(x[5], FRAC_CONST(0.25881904510252)); - f7 = f6 - f3; - y[0] = f1 + f6 + f4; - y[1] = f2 + f3 - x[4]; - y[2] = f7 + f2 - f5; - y[3] = f1 - f7 - f5; - y[4] = f1 - f3 - x[4]; - y[5] = f2 - f6 + f4; -} - -/* complex filter, size 12 */ -static void channel_filter12(hyb_info *hyb, uint8_t frame_len, const real_t *filter, - qmf_t *buffer, qmf_t **X_hybrid) -{ - uint8_t i, n; - real_t input_re1[6], input_re2[6], input_im1[6], input_im2[6]; - real_t out_re1[6], out_re2[6], out_im1[6], out_im2[6]; - - for (i = 0; i < frame_len; i++) - { - for (n = 0; n < 6; n++) - { - if (n == 0) - { - input_re1[0] = MUL_F(QMF_RE(buffer[6+i]), filter[6]); - input_re2[0] = MUL_F(QMF_IM(buffer[6+i]), filter[6]); - } else { - input_re1[6-n] = MUL_F((QMF_RE(buffer[n+i]) + QMF_RE(buffer[12-n+i])), filter[n]); - input_re2[6-n] = MUL_F((QMF_IM(buffer[n+i]) + QMF_IM(buffer[12-n+i])), filter[n]); - } - input_im2[n] = MUL_F((QMF_RE(buffer[n+i]) - QMF_RE(buffer[12-n+i])), filter[n]); - input_im1[n] = MUL_F((QMF_IM(buffer[n+i]) - QMF_IM(buffer[12-n+i])), filter[n]); - } - - DCT3_6_unscaled(out_re1, input_re1); - DCT3_6_unscaled(out_re2, input_re2); - - DCT3_6_unscaled(out_im1, input_im1); - DCT3_6_unscaled(out_im2, input_im2); - - for (n = 0; n < 6; n += 2) - { - QMF_RE(X_hybrid[i][n]) = out_re1[n] - out_im1[n]; - QMF_IM(X_hybrid[i][n]) = out_re2[n] + out_im2[n]; - QMF_RE(X_hybrid[i][n+1]) = out_re1[n+1] + out_im1[n+1]; - QMF_IM(X_hybrid[i][n+1]) = out_re2[n+1] - out_im2[n+1]; - - QMF_RE(X_hybrid[i][10-n]) = out_re1[n+1] - out_im1[n+1]; - QMF_IM(X_hybrid[i][10-n]) = out_re2[n+1] + out_im2[n+1]; - QMF_RE(X_hybrid[i][11-n]) = out_re1[n] + out_im1[n]; - QMF_IM(X_hybrid[i][11-n]) = out_re2[n] - out_im2[n]; - } - } -} - -/* Hybrid analysis: further split up QMF subbands - * to improve frequency resolution - */ -static void hybrid_analysis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32], - uint8_t use34, uint8_t numTimeSlotsRate) -{ - uint8_t k, n, band; - uint8_t offset = 0; - uint8_t qmf_bands = (use34) ? 5 : 3; - uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20; - - for (band = 0; band < qmf_bands; band++) - { - /* build working buffer */ - memcpy(hyb->work, hyb->buffer[band], 12 * sizeof(qmf_t)); - - /* add new samples */ - for (n = 0; n < hyb->frame_len; n++) - { - QMF_RE(hyb->work[12 + n]) = QMF_RE(X[n + 6 /*delay*/][band]); - QMF_IM(hyb->work[12 + n]) = QMF_IM(X[n + 6 /*delay*/][band]); - } - - /* store samples */ - memcpy(hyb->buffer[band], hyb->work + hyb->frame_len, 12 * sizeof(qmf_t)); - - - switch(resolution[band]) - { - case 2: - /* Type B real filter, Q[p] = 2 */ - channel_filter2(hyb, hyb->frame_len, p2_13_20, hyb->work, hyb->temp); - break; - case 4: - /* Type A complex filter, Q[p] = 4 */ - channel_filter4(hyb, hyb->frame_len, p4_13_34, hyb->work, hyb->temp); - break; - case 8: - /* Type A complex filter, Q[p] = 8 */ - channel_filter8(hyb, hyb->frame_len, (use34) ? p8_13_34 : p8_13_20, - hyb->work, hyb->temp); - break; - case 12: - /* Type A complex filter, Q[p] = 12 */ - channel_filter12(hyb, hyb->frame_len, p12_13_34, hyb->work, hyb->temp); - break; - } - - for (n = 0; n < hyb->frame_len; n++) - { - for (k = 0; k < resolution[band]; k++) - { - QMF_RE(X_hybrid[n][offset + k]) = QMF_RE(hyb->temp[n][k]); - QMF_IM(X_hybrid[n][offset + k]) = QMF_IM(hyb->temp[n][k]); - } - } - offset += resolution[band]; - } - - /* group hybrid channels */ - if (!use34) - { - for (n = 0; n < numTimeSlotsRate; n++) - { - QMF_RE(X_hybrid[n][3]) += QMF_RE(X_hybrid[n][4]); - QMF_IM(X_hybrid[n][3]) += QMF_IM(X_hybrid[n][4]); - QMF_RE(X_hybrid[n][4]) = 0; - QMF_IM(X_hybrid[n][4]) = 0; - - QMF_RE(X_hybrid[n][2]) += QMF_RE(X_hybrid[n][5]); - QMF_IM(X_hybrid[n][2]) += QMF_IM(X_hybrid[n][5]); - QMF_RE(X_hybrid[n][5]) = 0; - QMF_IM(X_hybrid[n][5]) = 0; - } - } -} - -static void hybrid_synthesis(hyb_info *hyb, qmf_t X[32][64], qmf_t X_hybrid[32][32], - uint8_t use34, uint8_t numTimeSlotsRate) -{ - uint8_t k, n, band; - uint8_t offset = 0; - uint8_t qmf_bands = (use34) ? 5 : 3; - uint8_t *resolution = (use34) ? hyb->resolution34 : hyb->resolution20; - - for(band = 0; band < qmf_bands; band++) - { - for (n = 0; n < hyb->frame_len; n++) - { - QMF_RE(X[n][band]) = 0; - QMF_IM(X[n][band]) = 0; - - for (k = 0; k < resolution[band]; k++) - { - QMF_RE(X[n][band]) += QMF_RE(X_hybrid[n][offset + k]); - QMF_IM(X[n][band]) += QMF_IM(X_hybrid[n][offset + k]); - } - } - offset += resolution[band]; - } -} - -/* limits the value i to the range [min,max] */ -static int8_t delta_clip(int8_t i, int8_t min, int8_t max) -{ - if (i < min) - return min; - else if (i > max) - return max; - else - return i; -} - -//int iid = 0; - -/* delta decode array */ -static void delta_decode(uint8_t enable, int8_t *index, int8_t *index_prev, - uint8_t dt_flag, uint8_t nr_par, uint8_t stride, - int8_t min_index, int8_t max_index) -{ - int8_t i; - - if (enable == 1) - { - if (dt_flag == 0) - { - /* delta coded in frequency direction */ - index[0] = 0 + index[0]; - index[0] = delta_clip(index[0], min_index, max_index); - - for (i = 1; i < nr_par; i++) - { - index[i] = index[i-1] + index[i]; - index[i] = delta_clip(index[i], min_index, max_index); - } - } else { - /* delta coded in time direction */ - for (i = 0; i < nr_par; i++) - { - //int8_t tmp2; - //int8_t tmp = index[i]; - - //printf("%d %d\n", index_prev[i*stride], index[i]); - //printf("%d\n", index[i]); - - index[i] = index_prev[i*stride] + index[i]; - //tmp2 = index[i]; - index[i] = delta_clip(index[i], min_index, max_index); - - //if (iid) - //{ - // if (index[i] == 7) - // { - // printf("%d %d %d\n", index_prev[i*stride], tmp, tmp2); - // } - //} - } - } - } else { - /* set indices to zero */ - for (i = 0; i < nr_par; i++) - { - index[i] = 0; - } - } - - /* coarse */ - if (stride == 2) - { - for (i = (nr_par<<1)-1; i > 0; i--) - { - index[i] = index[i>>1]; - } - } -} - -/* delta modulo decode array */ -/* in: log2 value of the modulo value to allow using AND instead of MOD */ -static void delta_modulo_decode(uint8_t enable, int8_t *index, int8_t *index_prev, - uint8_t dt_flag, uint8_t nr_par, uint8_t stride, - int8_t and_modulo) -{ - int8_t i; - - if (enable == 1) - { - if (dt_flag == 0) - { - /* delta coded in frequency direction */ - index[0] = 0 + index[0]; - index[0] &= and_modulo; - - for (i = 1; i < nr_par; i++) - { - index[i] = index[i-1] + index[i]; - index[i] &= and_modulo; - } - } else { - /* delta coded in time direction */ - for (i = 0; i < nr_par; i++) - { - index[i] = index_prev[i*stride] + index[i]; - index[i] &= and_modulo; - } - } - } else { - /* set indices to zero */ - for (i = 0; i < nr_par; i++) - { - index[i] = 0; - } - } - - /* coarse */ - if (stride == 2) - { - index[0] = 0; - for (i = (nr_par<<1)-1; i > 0; i--) - { - index[i] = index[i>>1]; - } - } -} - -#ifdef PS_LOW_POWER -static void map34indexto20(int8_t *index, uint8_t bins) -{ - index[0] = (2*index[0]+index[1])/3; - index[1] = (index[1]+2*index[2])/3; - index[2] = (2*index[3]+index[4])/3; - index[3] = (index[4]+2*index[5])/3; - index[4] = (index[6]+index[7])/2; - index[5] = (index[8]+index[9])/2; - index[6] = index[10]; - index[7] = index[11]; - index[8] = (index[12]+index[13])/2; - index[9] = (index[14]+index[15])/2; - index[10] = index[16]; - - if (bins == 34) - { - index[11] = index[17]; - index[12] = index[18]; - index[13] = index[19]; - index[14] = (index[20]+index[21])/2; - index[15] = (index[22]+index[23])/2; - index[16] = (index[24]+index[25])/2; - index[17] = (index[26]+index[27])/2; - index[18] = (index[28]+index[29]+index[30]+index[31])/4; - index[19] = (index[32]+index[33])/2; - } -} -#endif - -static void map20indexto34(int8_t *index, uint8_t bins) -{ - index[0] = index[0]; - index[1] = (index[0] + index[1])/2; - index[2] = index[1]; - index[3] = index[2]; - index[4] = (index[2] + index[3])/2; - index[5] = index[3]; - index[6] = index[4]; - index[7] = index[4]; - index[8] = index[5]; - index[9] = index[5]; - index[10] = index[6]; - index[11] = index[7]; - index[12] = index[8]; - index[13] = index[8]; - index[14] = index[9]; - index[15] = index[9]; - index[16] = index[10]; - - if (bins == 34) - { - index[17] = index[11]; - index[18] = index[12]; - index[19] = index[13]; - index[20] = index[14]; - index[21] = index[14]; - index[22] = index[15]; - index[23] = index[15]; - index[24] = index[16]; - index[25] = index[16]; - index[26] = index[17]; - index[27] = index[17]; - index[28] = index[18]; - index[29] = index[18]; - index[30] = index[18]; - index[31] = index[18]; - index[32] = index[19]; - index[33] = index[19]; - } -} - -/* parse the bitstream data decoded in ps_data() */ -static void ps_data_decode(ps_info *ps) -{ - uint8_t env, bin; - - /* ps data not available, use data from previous frame */ - if (ps->ps_data_available == 0) - { - ps->num_env = 0; - } - - for (env = 0; env < ps->num_env; env++) - { - int8_t *iid_index_prev; - int8_t *icc_index_prev; - int8_t *ipd_index_prev; - int8_t *opd_index_prev; - - int8_t num_iid_steps = (ps->iid_mode < 3) ? 7 : 15 /*fine quant*/; - - if (env == 0) - { - /* take last envelope from previous frame */ - iid_index_prev = ps->iid_index_prev; - icc_index_prev = ps->icc_index_prev; - ipd_index_prev = ps->ipd_index_prev; - opd_index_prev = ps->opd_index_prev; - } else { - /* take index values from previous envelope */ - iid_index_prev = ps->iid_index[env - 1]; - icc_index_prev = ps->icc_index[env - 1]; - ipd_index_prev = ps->ipd_index[env - 1]; - opd_index_prev = ps->opd_index[env - 1]; - } - -// iid = 1; - /* delta decode iid parameters */ - delta_decode(ps->enable_iid, ps->iid_index[env], iid_index_prev, - ps->iid_dt[env], ps->nr_iid_par, - (ps->iid_mode == 0 || ps->iid_mode == 3) ? 2 : 1, - -num_iid_steps, num_iid_steps); -// iid = 0; - - /* delta decode icc parameters */ - delta_decode(ps->enable_icc, ps->icc_index[env], icc_index_prev, - ps->icc_dt[env], ps->nr_icc_par, - (ps->icc_mode == 0 || ps->icc_mode == 3) ? 2 : 1, - 0, 7); - - /* delta modulo decode ipd parameters */ - delta_modulo_decode(ps->enable_ipdopd, ps->ipd_index[env], ipd_index_prev, - ps->ipd_dt[env], ps->nr_ipdopd_par, 1, 7); - - /* delta modulo decode opd parameters */ - delta_modulo_decode(ps->enable_ipdopd, ps->opd_index[env], opd_index_prev, - ps->opd_dt[env], ps->nr_ipdopd_par, 1, 7); - } - - /* handle error case */ - if (ps->num_env == 0) - { - /* force to 1 */ - ps->num_env = 1; - - if (ps->enable_iid) - { - for (bin = 0; bin < 34; bin++) - ps->iid_index[0][bin] = ps->iid_index_prev[bin]; - } else { - for (bin = 0; bin < 34; bin++) - ps->iid_index[0][bin] = 0; - } - - if (ps->enable_icc) - { - for (bin = 0; bin < 34; bin++) - ps->icc_index[0][bin] = ps->icc_index_prev[bin]; - } else { - for (bin = 0; bin < 34; bin++) - ps->icc_index[0][bin] = 0; - } - - if (ps->enable_ipdopd) - { - for (bin = 0; bin < 17; bin++) - { - ps->ipd_index[0][bin] = ps->ipd_index_prev[bin]; - ps->opd_index[0][bin] = ps->opd_index_prev[bin]; - } - } else { - for (bin = 0; bin < 17; bin++) - { - ps->ipd_index[0][bin] = 0; - ps->opd_index[0][bin] = 0; - } - } - } - - /* update previous indices */ - for (bin = 0; bin < 34; bin++) - ps->iid_index_prev[bin] = ps->iid_index[ps->num_env-1][bin]; - for (bin = 0; bin < 34; bin++) - ps->icc_index_prev[bin] = ps->icc_index[ps->num_env-1][bin]; - for (bin = 0; bin < 17; bin++) - { - ps->ipd_index_prev[bin] = ps->ipd_index[ps->num_env-1][bin]; - ps->opd_index_prev[bin] = ps->opd_index[ps->num_env-1][bin]; - } - - ps->ps_data_available = 0; - - if (ps->frame_class == 0) - { - ps->border_position[0] = 0; - for (env = 1; env < ps->num_env; env++) - { - ps->border_position[env] = (env * ps->numTimeSlotsRate) / ps->num_env; - } - ps->border_position[ps->num_env] = ps->numTimeSlotsRate; - } else { - ps->border_position[0] = 0; - - if (ps->border_position[ps->num_env] < ps->numTimeSlotsRate) - { - for (bin = 0; bin < 34; bin++) - { - ps->iid_index[ps->num_env][bin] = ps->iid_index[ps->num_env-1][bin]; - ps->icc_index[ps->num_env][bin] = ps->icc_index[ps->num_env-1][bin]; - } - for (bin = 0; bin < 17; bin++) - { - ps->ipd_index[ps->num_env][bin] = ps->ipd_index[ps->num_env-1][bin]; - ps->opd_index[ps->num_env][bin] = ps->opd_index[ps->num_env-1][bin]; - } - ps->num_env++; - ps->border_position[ps->num_env] = ps->numTimeSlotsRate; - } - - for (env = 1; env < ps->num_env; env++) - { - int8_t thr = ps->numTimeSlotsRate - (ps->num_env - env); - - if (ps->border_position[env] > thr) - { - ps->border_position[env] = thr; - } else { - thr = ps->border_position[env-1]+1; - if (ps->border_position[env] < thr) - { - ps->border_position[env] = thr; - } - } - } - } - - /* make sure that the indices of all parameters can be mapped - * to the same hybrid synthesis filterbank - */ -#ifdef PS_LOW_POWER - for (env = 0; env < ps->num_env; env++) - { - if (ps->iid_mode == 2 || ps->iid_mode == 5) - map34indexto20(ps->iid_index[env], 34); - if (ps->icc_mode == 2 || ps->icc_mode == 5) - map34indexto20(ps->icc_index[env], 34); - - /* disable ipd/opd */ - for (bin = 0; bin < 17; bin++) - { - ps->aaIpdIndex[env][bin] = 0; - ps->aaOpdIndex[env][bin] = 0; - } - } -#else - if (ps->use34hybrid_bands) - { - for (env = 0; env < ps->num_env; env++) - { - if (ps->iid_mode != 2 && ps->iid_mode != 5) - map20indexto34(ps->iid_index[env], 34); - if (ps->icc_mode != 2 && ps->icc_mode != 5) - map20indexto34(ps->icc_index[env], 34); - if (ps->ipd_mode != 2 && ps->ipd_mode != 5) - { - map20indexto34(ps->ipd_index[env], 17); - map20indexto34(ps->opd_index[env], 17); - } - } - } -#endif - -#if 0 - for (env = 0; env < ps->num_env; env++) - { - printf("iid[env:%d]:", env); - for (bin = 0; bin < 34; bin++) - { - printf(" %d", ps->iid_index[env][bin]); - } - printf("\n"); - } - for (env = 0; env < ps->num_env; env++) - { - printf("icc[env:%d]:", env); - for (bin = 0; bin < 34; bin++) - { - printf(" %d", ps->icc_index[env][bin]); - } - printf("\n"); - } - for (env = 0; env < ps->num_env; env++) - { - printf("ipd[env:%d]:", env); - for (bin = 0; bin < 17; bin++) - { - printf(" %d", ps->ipd_index[env][bin]); - } - printf("\n"); - } - for (env = 0; env < ps->num_env; env++) - { - printf("opd[env:%d]:", env); - for (bin = 0; bin < 17; bin++) - { - printf(" %d", ps->opd_index[env][bin]); - } - printf("\n"); - } - printf("\n"); -#endif -} - -/* decorrelate the mono signal using an allpass filter */ -static void ps_decorrelate(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64], - qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]) -{ - uint8_t gr, n, m, bk; - uint8_t temp_delay; - uint8_t sb, maxsb; - const complex_t *Phi_Fract_SubQmf; - uint8_t temp_delay_ser[NO_ALLPASS_LINKS]; - real_t P_SmoothPeakDecayDiffNrg, nrg; - real_t P[32][34]; - real_t G_TransientRatio[32][34] = {{0}}; - complex_t inputLeft; - - - /* chose hybrid filterbank: 20 or 34 band case */ - if (ps->use34hybrid_bands) - { - Phi_Fract_SubQmf = Phi_Fract_SubQmf34; - } else{ - Phi_Fract_SubQmf = Phi_Fract_SubQmf20; - } - - /* clear the energy values */ - for (n = 0; n < 32; n++) - { - for (bk = 0; bk < 34; bk++) - { - P[n][bk] = 0; - } - } - - /* calculate the energy in each parameter band b(k) */ - for (gr = 0; gr < ps->num_groups; gr++) - { - /* select the parameter index b(k) to which this group belongs */ - bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr]; - - /* select the upper subband border for this group */ - maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr]+1 : ps->group_border[gr+1]; - - for (sb = ps->group_border[gr]; sb < maxsb; sb++) - { - for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++) - { -#ifdef FIXED_POINT - uint32_t in_re, in_im; -#endif - - /* input from hybrid subbands or QMF subbands */ - if (gr < ps->num_hybrid_groups) - { - RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]); - IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]); - } else { - RE(inputLeft) = QMF_RE(X_left[n][sb]); - IM(inputLeft) = QMF_IM(X_left[n][sb]); - } - - /* accumulate energy */ -#ifdef FIXED_POINT - /* NOTE: all input is scaled by 2^(-5) because of fixed point QMF - * meaning that P will be scaled by 2^(-10) compared to floating point version - */ - in_re = ((abs(RE(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS); - in_im = ((abs(IM(inputLeft))+(1<<(REAL_BITS-1)))>>REAL_BITS); - P[n][bk] += in_re*in_re + in_im*in_im; -#else - P[n][bk] += MUL_R(RE(inputLeft),RE(inputLeft)) + MUL_R(IM(inputLeft),IM(inputLeft)); -#endif - } - } - } - -#if 0 - for (n = 0; n < 32; n++) - { - for (bk = 0; bk < 34; bk++) - { -#ifdef FIXED_POINT - printf("%d %d: %d\n", n, bk, P[n][bk] /*/(float)REAL_PRECISION*/); -#else - printf("%d %d: %f\n", n, bk, P[n][bk]/1024.0); -#endif - } - } -#endif - - /* calculate transient reduction ratio for each parameter band b(k) */ - for (bk = 0; bk < ps->nr_par_bands; bk++) - { - for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++) - { - const real_t gamma = COEF_CONST(1.5); - - ps->P_PeakDecayNrg[bk] = MUL_F(ps->P_PeakDecayNrg[bk], ps->alpha_decay); - if (ps->P_PeakDecayNrg[bk] < P[n][bk]) - ps->P_PeakDecayNrg[bk] = P[n][bk]; - - /* apply smoothing filter to peak decay energy */ - P_SmoothPeakDecayDiffNrg = ps->P_SmoothPeakDecayDiffNrg_prev[bk]; - P_SmoothPeakDecayDiffNrg += MUL_F((ps->P_PeakDecayNrg[bk] - P[n][bk] - ps->P_SmoothPeakDecayDiffNrg_prev[bk]), ps->alpha_smooth); - ps->P_SmoothPeakDecayDiffNrg_prev[bk] = P_SmoothPeakDecayDiffNrg; - - /* apply smoothing filter to energy */ - nrg = ps->P_prev[bk]; - nrg += MUL_F((P[n][bk] - ps->P_prev[bk]), ps->alpha_smooth); - ps->P_prev[bk] = nrg; - - /* calculate transient ratio */ - if (MUL_C(P_SmoothPeakDecayDiffNrg, gamma) <= nrg) - { - G_TransientRatio[n][bk] = REAL_CONST(1.0); - } else { - G_TransientRatio[n][bk] = DIV_R(nrg, (MUL_C(P_SmoothPeakDecayDiffNrg, gamma))); - } - } - } - -#if 0 - for (n = 0; n < 32; n++) - { - for (bk = 0; bk < 34; bk++) - { -#ifdef FIXED_POINT - printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]/(float)REAL_PRECISION); -#else - printf("%d %d: %f\n", n, bk, G_TransientRatio[n][bk]); -#endif - } - } -#endif - - /* apply stereo decorrelation filter to the signal */ - for (gr = 0; gr < ps->num_groups; gr++) - { - if (gr < ps->num_hybrid_groups) - maxsb = ps->group_border[gr] + 1; - else - maxsb = ps->group_border[gr + 1]; - - /* QMF channel */ - for (sb = ps->group_border[gr]; sb < maxsb; sb++) - { - real_t g_DecaySlope; - real_t g_DecaySlope_filt[NO_ALLPASS_LINKS]; - - /* g_DecaySlope: [0..1] */ - if (gr < ps->num_hybrid_groups || sb <= ps->decay_cutoff) - { - g_DecaySlope = FRAC_CONST(1.0); - } else { - int8_t decay = ps->decay_cutoff - sb; - if (decay <= -20 /* -1/DECAY_SLOPE */) - { - g_DecaySlope = 0; - } else { - /* decay(int)*decay_slope(frac) = g_DecaySlope(frac) */ - g_DecaySlope = FRAC_CONST(1.0) + DECAY_SLOPE * decay; - } - } - - /* calculate g_DecaySlope_filt for every m multiplied by filter_a[m] */ - for (m = 0; m < NO_ALLPASS_LINKS; m++) - { - g_DecaySlope_filt[m] = MUL_F(g_DecaySlope, filter_a[m]); - } - - - /* set delay indices */ - temp_delay = ps->saved_delay; - for (n = 0; n < NO_ALLPASS_LINKS; n++) - temp_delay_ser[n] = ps->delay_buf_index_ser[n]; - - for (n = ps->border_position[0]; n < ps->border_position[ps->num_env]; n++) - { - complex_t tmp, tmp0, R0; - - if (gr < ps->num_hybrid_groups) - { - /* hybrid filterbank input */ - RE(inputLeft) = QMF_RE(X_hybrid_left[n][sb]); - IM(inputLeft) = QMF_IM(X_hybrid_left[n][sb]); - } else { - /* QMF filterbank input */ - RE(inputLeft) = QMF_RE(X_left[n][sb]); - IM(inputLeft) = QMF_IM(X_left[n][sb]); - } - - if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups) - { - /* delay */ - - /* never hybrid subbands here, always QMF subbands */ - RE(tmp) = RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]); - IM(tmp) = IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]); - RE(R0) = RE(tmp); - IM(R0) = IM(tmp); - RE(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = RE(inputLeft); - IM(ps->delay_Qmf[ps->delay_buf_index_delay[sb]][sb]) = IM(inputLeft); - } else { - /* allpass filter */ - uint8_t m; - complex_t Phi_Fract; - - /* fetch parameters */ - if (gr < ps->num_hybrid_groups) - { - /* select data from the hybrid subbands */ - RE(tmp0) = RE(ps->delay_SubQmf[temp_delay][sb]); - IM(tmp0) = IM(ps->delay_SubQmf[temp_delay][sb]); - - RE(ps->delay_SubQmf[temp_delay][sb]) = RE(inputLeft); - IM(ps->delay_SubQmf[temp_delay][sb]) = IM(inputLeft); - - RE(Phi_Fract) = RE(Phi_Fract_SubQmf[sb]); - IM(Phi_Fract) = IM(Phi_Fract_SubQmf[sb]); - } else { - /* select data from the QMF subbands */ - RE(tmp0) = RE(ps->delay_Qmf[temp_delay][sb]); - IM(tmp0) = IM(ps->delay_Qmf[temp_delay][sb]); - - RE(ps->delay_Qmf[temp_delay][sb]) = RE(inputLeft); - IM(ps->delay_Qmf[temp_delay][sb]) = IM(inputLeft); - - RE(Phi_Fract) = RE(Phi_Fract_Qmf[sb]); - IM(Phi_Fract) = IM(Phi_Fract_Qmf[sb]); - } - - /* z^(-2) * Phi_Fract[k] */ - ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Phi_Fract), IM(Phi_Fract)); - - RE(R0) = RE(tmp); - IM(R0) = IM(tmp); - for (m = 0; m < NO_ALLPASS_LINKS; m++) - { - complex_t Q_Fract_allpass, tmp2; - - /* fetch parameters */ - if (gr < ps->num_hybrid_groups) - { - /* select data from the hybrid subbands */ - RE(tmp0) = RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]); - IM(tmp0) = IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]); - - if (ps->use34hybrid_bands) - { - RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf34[sb][m]); - IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf34[sb][m]); - } else { - RE(Q_Fract_allpass) = RE(Q_Fract_allpass_SubQmf20[sb][m]); - IM(Q_Fract_allpass) = IM(Q_Fract_allpass_SubQmf20[sb][m]); - } - } else { - /* select data from the QMF subbands */ - RE(tmp0) = RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]); - IM(tmp0) = IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]); - - RE(Q_Fract_allpass) = RE(Q_Fract_allpass_Qmf[sb][m]); - IM(Q_Fract_allpass) = IM(Q_Fract_allpass_Qmf[sb][m]); - } - - /* delay by a fraction */ - /* z^(-d(m)) * Q_Fract_allpass[k,m] */ - ComplexMult(&RE(tmp), &IM(tmp), RE(tmp0), IM(tmp0), RE(Q_Fract_allpass), IM(Q_Fract_allpass)); - - /* -a(m) * g_DecaySlope[k] */ - RE(tmp) += -MUL_F(g_DecaySlope_filt[m], RE(R0)); - IM(tmp) += -MUL_F(g_DecaySlope_filt[m], IM(R0)); - - /* -a(m) * g_DecaySlope[k] * Q_Fract_allpass[k,m] * z^(-d(m)) */ - RE(tmp2) = RE(R0) + MUL_F(g_DecaySlope_filt[m], RE(tmp)); - IM(tmp2) = IM(R0) + MUL_F(g_DecaySlope_filt[m], IM(tmp)); - - /* store sample */ - if (gr < ps->num_hybrid_groups) - { - RE(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2); - IM(ps->delay_SubQmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2); - } else { - RE(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = RE(tmp2); - IM(ps->delay_Qmf_ser[m][temp_delay_ser[m]][sb]) = IM(tmp2); - } - - /* store for next iteration (or as output value if last iteration) */ - RE(R0) = RE(tmp); - IM(R0) = IM(tmp); - } - } - - /* select b(k) for reading the transient ratio */ - bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr]; - - /* duck if a past transient is found */ - RE(R0) = MUL_R(G_TransientRatio[n][bk], RE(R0)); - IM(R0) = MUL_R(G_TransientRatio[n][bk], IM(R0)); - - if (gr < ps->num_hybrid_groups) - { - /* hybrid */ - QMF_RE(X_hybrid_right[n][sb]) = RE(R0); - QMF_IM(X_hybrid_right[n][sb]) = IM(R0); - } else { - /* QMF */ - QMF_RE(X_right[n][sb]) = RE(R0); - QMF_IM(X_right[n][sb]) = IM(R0); - } - - /* Update delay buffer index */ - if (++temp_delay >= 2) - { - temp_delay = 0; - } - - /* update delay indices */ - if (sb > ps->nr_allpass_bands && gr >= ps->num_hybrid_groups) - { - /* delay_D depends on the samplerate, it can hold the values 14 and 1 */ - if (++ps->delay_buf_index_delay[sb] >= ps->delay_D[sb]) - { - ps->delay_buf_index_delay[sb] = 0; - } - } - - for (m = 0; m < NO_ALLPASS_LINKS; m++) - { - if (++temp_delay_ser[m] >= ps->num_sample_delay_ser[m]) - { - temp_delay_ser[m] = 0; - } - } - } - } - } - - /* update delay indices */ - ps->saved_delay = temp_delay; - for (m = 0; m < NO_ALLPASS_LINKS; m++) - ps->delay_buf_index_ser[m] = temp_delay_ser[m]; -} - -#ifdef FIXED_POINT -#define step(shift) \ - if ((0x40000000l >> shift) + root <= value) \ - { \ - value -= (0x40000000l >> shift) + root; \ - root = (root >> 1) | (0x40000000l >> shift); \ - } else { \ - root = root >> 1; \ - } - -/* fixed point square root approximation */ -static real_t ps_sqrt(real_t value) -{ - real_t root = 0; - - step( 0); step( 2); step( 4); step( 6); - step( 8); step(10); step(12); step(14); - step(16); step(18); step(20); step(22); - step(24); step(26); step(28); step(30); - - if (root < value) - ++root; - - root <<= (REAL_BITS/2); - - return root; -} -#else -#define ps_sqrt(A) sqrt(A) -#endif - -static const real_t ipdopd_cos_tab[] = { - FRAC_CONST(1.000000000000000), - FRAC_CONST(0.707106781186548), - FRAC_CONST(0.000000000000000), - FRAC_CONST(-0.707106781186547), - FRAC_CONST(-1.000000000000000), - FRAC_CONST(-0.707106781186548), - FRAC_CONST(-0.000000000000000), - FRAC_CONST(0.707106781186547), - FRAC_CONST(1.000000000000000) -}; - -static const real_t ipdopd_sin_tab[] = { - FRAC_CONST(0.000000000000000), - FRAC_CONST(0.707106781186547), - FRAC_CONST(1.000000000000000), - FRAC_CONST(0.707106781186548), - FRAC_CONST(0.000000000000000), - FRAC_CONST(-0.707106781186547), - FRAC_CONST(-1.000000000000000), - FRAC_CONST(-0.707106781186548), - FRAC_CONST(-0.000000000000000) -}; - -static real_t magnitude_c(complex_t c) -{ -#ifdef FIXED_POINT -#define ps_abs(A) (((A) > 0) ? (A) : (-(A))) -#define ALPHA FRAC_CONST(0.948059448969) -#define BETA FRAC_CONST(0.392699081699) - - real_t abs_inphase = ps_abs(RE(c)); - real_t abs_quadrature = ps_abs(IM(c)); - - if (abs_inphase > abs_quadrature) { - return MUL_F(abs_inphase, ALPHA) + MUL_F(abs_quadrature, BETA); - } else { - return MUL_F(abs_quadrature, ALPHA) + MUL_F(abs_inphase, BETA); - } -#else - return sqrt(RE(c)*RE(c) + IM(c)*IM(c)); -#endif -} - -static void ps_mix_phase(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64], - qmf_t X_hybrid_left[32][32], qmf_t X_hybrid_right[32][32]) -{ - uint8_t n; - uint8_t gr; - uint8_t bk = 0; - uint8_t sb, maxsb; - uint8_t env; - uint8_t nr_ipdopd_par; - complex_t h11, h12, h21, h22; - complex_t H11, H12, H21, H22; - complex_t deltaH11, deltaH12, deltaH21, deltaH22; - complex_t tempLeft; - complex_t tempRight; - complex_t phaseLeft; - complex_t phaseRight; - real_t L; - const real_t *sf_iid; - uint8_t no_iid_steps; - - if (ps->iid_mode >= 3) - { - no_iid_steps = 15; - sf_iid = sf_iid_fine; - } else { - no_iid_steps = 7; - sf_iid = sf_iid_normal; - } - - if (ps->ipd_mode == 0 || ps->ipd_mode == 3) - { - nr_ipdopd_par = 11; /* resolution */ - } else { - nr_ipdopd_par = ps->nr_ipdopd_par; - } - - for (gr = 0; gr < ps->num_groups; gr++) - { - bk = (~NEGATE_IPD_MASK) & ps->map_group2bk[gr]; - - /* use one channel per group in the subqmf domain */ - maxsb = (gr < ps->num_hybrid_groups) ? ps->group_border[gr] + 1 : ps->group_border[gr + 1]; - - for (env = 0; env < ps->num_env; env++) - { - if (ps->icc_mode < 3) - { - /* type 'A' mixing as described in 8.6.4.6.2.1 */ - real_t c_1, c_2; - real_t cosa, sina; - real_t cosb, sinb; - real_t ab1, ab2; - real_t ab3, ab4; - - /* - c_1 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps + iid_index] / 10.0))); - c_2 = sqrt(2.0 / (1.0 + pow(10.0, quant_iid[no_iid_steps - iid_index] / 10.0))); - alpha = 0.5 * acos(quant_rho[icc_index]); - beta = alpha * ( c_1 - c_2 ) / sqrt(2.0); - */ - - //printf("%d\n", ps->iid_index[env][bk]); - - /* calculate the scalefactors c_1 and c_2 from the intensity differences */ - c_1 = sf_iid[no_iid_steps + ps->iid_index[env][bk]]; - c_2 = sf_iid[no_iid_steps - ps->iid_index[env][bk]]; - - /* calculate alpha and beta using the ICC parameters */ - cosa = cos_alphas[ps->icc_index[env][bk]]; - sina = sin_alphas[ps->icc_index[env][bk]]; - - if (ps->iid_mode >= 3) - { - if (ps->iid_index[env][bk] < 0) - { - cosb = cos_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sinb = -sin_betas_fine[-ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - } else { - cosb = cos_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sinb = sin_betas_fine[ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - } - } else { - if (ps->iid_index[env][bk] < 0) - { - cosb = cos_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sinb = -sin_betas_normal[-ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - } else { - cosb = cos_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sinb = sin_betas_normal[ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - } - } - - ab1 = MUL_C(cosb, cosa); - ab2 = MUL_C(sinb, sina); - ab3 = MUL_C(sinb, cosa); - ab4 = MUL_C(cosb, sina); - - /* h_xy: COEF */ - RE(h11) = MUL_C(c_2, (ab1 - ab2)); - RE(h12) = MUL_C(c_1, (ab1 + ab2)); - RE(h21) = MUL_C(c_2, (ab3 + ab4)); - RE(h22) = MUL_C(c_1, (ab3 - ab4)); - } else { - /* type 'B' mixing as described in 8.6.4.6.2.2 */ - real_t sina, cosa; - real_t cosg, sing; - - /* - real_t c, rho, mu, alpha, gamma; - uint8_t i; - - i = ps->iid_index[env][bk]; - c = (real_t)pow(10.0, ((i)?(((i>0)?1:-1)*quant_iid[((i>0)?i:-i)-1]):0.)/20.0); - rho = quant_rho[ps->icc_index[env][bk]]; - - if (rho == 0.0f && c == 1.) - { - alpha = (real_t)M_PI/4.0f; - rho = 0.05f; - } else { - if (rho <= 0.05f) - { - rho = 0.05f; - } - alpha = 0.5f*(real_t)atan( (2.0f*c*rho) / (c*c-1.0f) ); - - if (alpha < 0.) - { - alpha += (real_t)M_PI/2.0f; - } - if (rho < 0.) - { - alpha += (real_t)M_PI; - } - } - mu = c+1.0f/c; - mu = 1+(4.0f*rho*rho-4.0f)/(mu*mu); - gamma = (real_t)atan(sqrt((1.0f-sqrt(mu))/(1.0f+sqrt(mu)))); - */ - - if (ps->iid_mode >= 3) - { - uint8_t abs_iid = abs(ps->iid_index[env][bk]); - - cosa = sincos_alphas_B_fine[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sina = sincos_alphas_B_fine[30 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]]; - cosg = cos_gammas_fine[abs_iid][ps->icc_index[env][bk]]; - sing = sin_gammas_fine[abs_iid][ps->icc_index[env][bk]]; - } else { - uint8_t abs_iid = abs(ps->iid_index[env][bk]); - - cosa = sincos_alphas_B_normal[no_iid_steps + ps->iid_index[env][bk]][ps->icc_index[env][bk]]; - sina = sincos_alphas_B_normal[14 - (no_iid_steps + ps->iid_index[env][bk])][ps->icc_index[env][bk]]; - cosg = cos_gammas_normal[abs_iid][ps->icc_index[env][bk]]; - sing = sin_gammas_normal[abs_iid][ps->icc_index[env][bk]]; - } - - RE(h11) = MUL_C(COEF_SQRT2, MUL_C(cosa, cosg)); - RE(h12) = MUL_C(COEF_SQRT2, MUL_C(sina, cosg)); - RE(h21) = MUL_C(COEF_SQRT2, MUL_C(-cosa, sing)); - RE(h22) = MUL_C(COEF_SQRT2, MUL_C(sina, sing)); - } - - /* calculate phase rotation parameters H_xy */ - /* note that the imaginary part of these parameters are only calculated when - IPD and OPD are enabled - */ - if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par)) - { - int8_t i; - real_t xy, pq, xypq; - - /* ringbuffer index */ - i = ps->phase_hist; - - /* previous value */ -#ifdef FIXED_POINT - /* divide by 4, shift right 2 bits */ - RE(tempLeft) = RE(ps->ipd_prev[bk][i]) >> 2; - IM(tempLeft) = IM(ps->ipd_prev[bk][i]) >> 2; - RE(tempRight) = RE(ps->opd_prev[bk][i]) >> 2; - IM(tempRight) = IM(ps->opd_prev[bk][i]) >> 2; -#else - RE(tempLeft) = MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.25)); - IM(tempLeft) = MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.25)); - RE(tempRight) = MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.25)); - IM(tempRight) = MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.25)); -#endif - - /* save current value */ - RE(ps->ipd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->ipd_index[env][bk])]; - IM(ps->ipd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->ipd_index[env][bk])]; - RE(ps->opd_prev[bk][i]) = ipdopd_cos_tab[abs(ps->opd_index[env][bk])]; - IM(ps->opd_prev[bk][i]) = ipdopd_sin_tab[abs(ps->opd_index[env][bk])]; - - /* add current value */ - RE(tempLeft) += RE(ps->ipd_prev[bk][i]); - IM(tempLeft) += IM(ps->ipd_prev[bk][i]); - RE(tempRight) += RE(ps->opd_prev[bk][i]); - IM(tempRight) += IM(ps->opd_prev[bk][i]); - - /* ringbuffer index */ - if (i == 0) - { - i = 2; - } - i--; - - /* get value before previous */ -#ifdef FIXED_POINT - /* dividing by 2, shift right 1 bit */ - RE(tempLeft) += (RE(ps->ipd_prev[bk][i]) >> 1); - IM(tempLeft) += (IM(ps->ipd_prev[bk][i]) >> 1); - RE(tempRight) += (RE(ps->opd_prev[bk][i]) >> 1); - IM(tempRight) += (IM(ps->opd_prev[bk][i]) >> 1); -#else - RE(tempLeft) += MUL_F(RE(ps->ipd_prev[bk][i]), FRAC_CONST(0.5)); - IM(tempLeft) += MUL_F(IM(ps->ipd_prev[bk][i]), FRAC_CONST(0.5)); - RE(tempRight) += MUL_F(RE(ps->opd_prev[bk][i]), FRAC_CONST(0.5)); - IM(tempRight) += MUL_F(IM(ps->opd_prev[bk][i]), FRAC_CONST(0.5)); -#endif - -#if 0 /* original code */ - ipd = (float)atan2(IM(tempLeft), RE(tempLeft)); - opd = (float)atan2(IM(tempRight), RE(tempRight)); - - /* phase rotation */ - RE(phaseLeft) = (float)cos(opd); - IM(phaseLeft) = (float)sin(opd); - opd -= ipd; - RE(phaseRight) = (float)cos(opd); - IM(phaseRight) = (float)sin(opd); -#else - - // x = IM(tempLeft) - // y = RE(tempLeft) - // p = IM(tempRight) - // q = RE(tempRight) - // cos(atan2(x,y)) = y/sqrt((x*x) + (y*y)) - // sin(atan2(x,y)) = x/sqrt((x*x) + (y*y)) - // cos(atan2(x,y)-atan2(p,q)) = (y*q + x*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) ); - // sin(atan2(x,y)-atan2(p,q)) = (x*q - y*p) / ( sqrt((x*x) + (y*y)) * sqrt((p*p) + (q*q)) ); - - xy = magnitude_c(tempRight); - pq = magnitude_c(tempLeft); - - if (xy != 0) - { - RE(phaseLeft) = DIV_R(RE(tempRight), xy); - IM(phaseLeft) = DIV_R(IM(tempRight), xy); - } else { - RE(phaseLeft) = 0; - IM(phaseLeft) = 0; - } - - xypq = MUL_R(xy, pq); - - if (xypq != 0) - { - real_t tmp1 = MUL_R(RE(tempRight), RE(tempLeft)) + MUL_R(IM(tempRight), IM(tempLeft)); - real_t tmp2 = MUL_R(IM(tempRight), RE(tempLeft)) - MUL_R(RE(tempRight), IM(tempLeft)); - - RE(phaseRight) = DIV_R(tmp1, xypq); - IM(phaseRight) = DIV_R(tmp2, xypq); - } else { - RE(phaseRight) = 0; - IM(phaseRight) = 0; - } - -#endif - - /* MUL_F(COEF, REAL) = COEF */ - IM(h11) = MUL_R(RE(h11), IM(phaseLeft)); - IM(h12) = MUL_R(RE(h12), IM(phaseRight)); - IM(h21) = MUL_R(RE(h21), IM(phaseLeft)); - IM(h22) = MUL_R(RE(h22), IM(phaseRight)); - - RE(h11) = MUL_R(RE(h11), RE(phaseLeft)); - RE(h12) = MUL_R(RE(h12), RE(phaseRight)); - RE(h21) = MUL_R(RE(h21), RE(phaseLeft)); - RE(h22) = MUL_R(RE(h22), RE(phaseRight)); - } - - /* length of the envelope n_e+1 - n_e (in time samples) */ - /* 0 < L <= 32: integer */ - L = (real_t)(ps->border_position[env + 1] - ps->border_position[env]); - - /* obtain final H_xy by means of linear interpolation */ - RE(deltaH11) = (RE(h11) - RE(ps->h11_prev[gr])) / L; - RE(deltaH12) = (RE(h12) - RE(ps->h12_prev[gr])) / L; - RE(deltaH21) = (RE(h21) - RE(ps->h21_prev[gr])) / L; - RE(deltaH22) = (RE(h22) - RE(ps->h22_prev[gr])) / L; - - RE(H11) = RE(ps->h11_prev[gr]); - RE(H12) = RE(ps->h12_prev[gr]); - RE(H21) = RE(ps->h21_prev[gr]); - RE(H22) = RE(ps->h22_prev[gr]); - - RE(ps->h11_prev[gr]) = RE(h11); - RE(ps->h12_prev[gr]) = RE(h12); - RE(ps->h21_prev[gr]) = RE(h21); - RE(ps->h22_prev[gr]) = RE(h22); - - /* only calculate imaginary part when needed */ - if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par)) - { - /* obtain final H_xy by means of linear interpolation */ - IM(deltaH11) = (IM(h11) - IM(ps->h11_prev[gr])) / L; - IM(deltaH12) = (IM(h12) - IM(ps->h12_prev[gr])) / L; - IM(deltaH21) = (IM(h21) - IM(ps->h21_prev[gr])) / L; - IM(deltaH22) = (IM(h22) - IM(ps->h22_prev[gr])) / L; - - IM(H11) = IM(ps->h11_prev[gr]); - IM(H12) = IM(ps->h12_prev[gr]); - IM(H21) = IM(ps->h21_prev[gr]); - IM(H22) = IM(ps->h22_prev[gr]); - - if ((NEGATE_IPD_MASK & ps->map_group2bk[gr]) != 0) - { - IM(deltaH11) = -IM(deltaH11); - IM(deltaH12) = -IM(deltaH12); - IM(deltaH21) = -IM(deltaH21); - IM(deltaH22) = -IM(deltaH22); - - IM(H11) = -IM(H11); - IM(H12) = -IM(H12); - IM(H21) = -IM(H21); - IM(H22) = -IM(H22); - } - - IM(ps->h11_prev[gr]) = IM(h11); - IM(ps->h12_prev[gr]) = IM(h12); - IM(ps->h21_prev[gr]) = IM(h21); - IM(ps->h22_prev[gr]) = IM(h22); - } - - /* apply H_xy to the current envelope band of the decorrelated subband */ - for (n = ps->border_position[env]; n < ps->border_position[env + 1]; n++) - { - /* addition finalises the interpolation over every n */ - RE(H11) += RE(deltaH11); - RE(H12) += RE(deltaH12); - RE(H21) += RE(deltaH21); - RE(H22) += RE(deltaH22); - if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par)) - { - IM(H11) += IM(deltaH11); - IM(H12) += IM(deltaH12); - IM(H21) += IM(deltaH21); - IM(H22) += IM(deltaH22); - } - - /* channel is an alias to the subband */ - for (sb = ps->group_border[gr]; sb < maxsb; sb++) - { - complex_t inLeft, inRight; - - /* load decorrelated samples */ - if (gr < ps->num_hybrid_groups) - { - RE(inLeft) = RE(X_hybrid_left[n][sb]); - IM(inLeft) = IM(X_hybrid_left[n][sb]); - RE(inRight) = RE(X_hybrid_right[n][sb]); - IM(inRight) = IM(X_hybrid_right[n][sb]); - } else { - RE(inLeft) = RE(X_left[n][sb]); - IM(inLeft) = IM(X_left[n][sb]); - RE(inRight) = RE(X_right[n][sb]); - IM(inRight) = IM(X_right[n][sb]); - } - - /* apply mixing */ - RE(tempLeft) = MUL_C(RE(H11), RE(inLeft)) + MUL_C(RE(H21), RE(inRight)); - IM(tempLeft) = MUL_C(RE(H11), IM(inLeft)) + MUL_C(RE(H21), IM(inRight)); - RE(tempRight) = MUL_C(RE(H12), RE(inLeft)) + MUL_C(RE(H22), RE(inRight)); - IM(tempRight) = MUL_C(RE(H12), IM(inLeft)) + MUL_C(RE(H22), IM(inRight)); - - /* only perform imaginary operations when needed */ - if ((ps->enable_ipdopd) && (bk < nr_ipdopd_par)) - { - /* apply rotation */ - RE(tempLeft) -= MUL_C(IM(H11), IM(inLeft)) + MUL_C(IM(H21), IM(inRight)); - IM(tempLeft) += MUL_C(IM(H11), RE(inLeft)) + MUL_C(IM(H21), RE(inRight)); - RE(tempRight) -= MUL_C(IM(H12), IM(inLeft)) + MUL_C(IM(H22), IM(inRight)); - IM(tempRight) += MUL_C(IM(H12), RE(inLeft)) + MUL_C(IM(H22), RE(inRight)); - } - - /* store final samples */ - if (gr < ps->num_hybrid_groups) - { - RE(X_hybrid_left[n][sb]) = RE(tempLeft); - IM(X_hybrid_left[n][sb]) = IM(tempLeft); - RE(X_hybrid_right[n][sb]) = RE(tempRight); - IM(X_hybrid_right[n][sb]) = IM(tempRight); - } else { - RE(X_left[n][sb]) = RE(tempLeft); - IM(X_left[n][sb]) = IM(tempLeft); - RE(X_right[n][sb]) = RE(tempRight); - IM(X_right[n][sb]) = IM(tempRight); - } - } - } - - /* shift phase smoother's circular buffer index */ - ps->phase_hist++; - if (ps->phase_hist == 2) - { - ps->phase_hist = 0; - } - } - } -} - -void ps_free(ps_info *ps) -{ - /* free hybrid filterbank structures */ - hybrid_free(ps->hyb); - - faad_free(ps); -} - -ps_info *ps_init(uint8_t sr_index, uint8_t numTimeSlotsRate) -{ - uint8_t i; - uint8_t short_delay_band; - - ps_info *ps = (ps_info*)faad_malloc(sizeof(ps_info)); - memset(ps, 0, sizeof(ps_info)); - - ps->hyb = hybrid_init(numTimeSlotsRate); - ps->numTimeSlotsRate = numTimeSlotsRate; - - ps->ps_data_available = 0; - - /* delay stuff*/ - ps->saved_delay = 0; - - for (i = 0; i < 64; i++) - { - ps->delay_buf_index_delay[i] = 0; - } - - for (i = 0; i < NO_ALLPASS_LINKS; i++) - { - ps->delay_buf_index_ser[i] = 0; -#ifdef PARAM_32KHZ - if (sr_index <= 5) /* >= 32 kHz*/ - { - ps->num_sample_delay_ser[i] = delay_length_d[1][i]; - } else { - ps->num_sample_delay_ser[i] = delay_length_d[0][i]; - } -#else - /* THESE ARE CONSTANTS NOW */ - ps->num_sample_delay_ser[i] = delay_length_d[i]; -#endif - } - -#ifdef PARAM_32KHZ - if (sr_index <= 5) /* >= 32 kHz*/ - { - short_delay_band = 35; - ps->nr_allpass_bands = 22; - ps->alpha_decay = FRAC_CONST(0.76592833836465); - ps->alpha_smooth = FRAC_CONST(0.25); - } else { - short_delay_band = 64; - ps->nr_allpass_bands = 45; - ps->alpha_decay = FRAC_CONST(0.58664621951003); - ps->alpha_smooth = FRAC_CONST(0.6); - } -#else - /* THESE ARE CONSTANTS NOW */ - short_delay_band = 35; - ps->nr_allpass_bands = 22; - ps->alpha_decay = FRAC_CONST(0.76592833836465); - ps->alpha_smooth = FRAC_CONST(0.25); -#endif - - /* THESE ARE CONSTANT NOW IF PS IS INDEPENDANT OF SAMPLERATE */ - for (i = 0; i < short_delay_band; i++) - { - ps->delay_D[i] = 14; - } - for (i = short_delay_band; i < 64; i++) - { - ps->delay_D[i] = 1; - } - - /* mixing and phase */ - for (i = 0; i < 50; i++) - { - RE(ps->h11_prev[i]) = 1; - IM(ps->h12_prev[i]) = 1; - RE(ps->h11_prev[i]) = 1; - IM(ps->h12_prev[i]) = 1; - } - - ps->phase_hist = 0; - - for (i = 0; i < 20; i++) - { - RE(ps->ipd_prev[i][0]) = 0; - IM(ps->ipd_prev[i][0]) = 0; - RE(ps->ipd_prev[i][1]) = 0; - IM(ps->ipd_prev[i][1]) = 0; - RE(ps->opd_prev[i][0]) = 0; - IM(ps->opd_prev[i][0]) = 0; - RE(ps->opd_prev[i][1]) = 0; - IM(ps->opd_prev[i][1]) = 0; - } - - return ps; -} - -/* main Parametric Stereo decoding function */ -uint8_t ps_decode(ps_info *ps, qmf_t X_left[38][64], qmf_t X_right[38][64]) -{ - qmf_t X_hybrid_left[32][32] = {{0}}; - qmf_t X_hybrid_right[32][32] = {{0}}; - - /* delta decoding of the bitstream data */ - ps_data_decode(ps); - - /* set up some parameters depending on filterbank type */ - if (ps->use34hybrid_bands) - { - ps->group_border = (uint8_t*)group_border34; - ps->map_group2bk = (uint16_t*)map_group2bk34; - ps->num_groups = 32+18; - ps->num_hybrid_groups = 32; - ps->nr_par_bands = 34; - ps->decay_cutoff = 5; - } else { - ps->group_border = (uint8_t*)group_border20; - ps->map_group2bk = (uint16_t*)map_group2bk20; - ps->num_groups = 10+12; - ps->num_hybrid_groups = 10; - ps->nr_par_bands = 20; - ps->decay_cutoff = 3; - } - - /* Perform further analysis on the lowest subbands to get a higher - * frequency resolution - */ - hybrid_analysis((hyb_info*)ps->hyb, X_left, X_hybrid_left, - ps->use34hybrid_bands, ps->numTimeSlotsRate); - - /* decorrelate mono signal */ - ps_decorrelate(ps, X_left, X_right, X_hybrid_left, X_hybrid_right); - - /* apply mixing and phase parameters */ - ps_mix_phase(ps, X_left, X_right, X_hybrid_left, X_hybrid_right); - - /* hybrid synthesis, to rebuild the SBR QMF matrices */ - hybrid_synthesis((hyb_info*)ps->hyb, X_left, X_hybrid_left, - ps->use34hybrid_bands, ps->numTimeSlotsRate); - - hybrid_synthesis((hyb_info*)ps->hyb, X_right, X_hybrid_right, - ps->use34hybrid_bands, ps->numTimeSlotsRate); - - return 0; -} - -#endif - -- cgit v1.2.3