From cc2160de5cc05dc3aa77f3a34358e66f6193c8c9 Mon Sep 17 00:00:00 2001 From: Michał Cichoń Date: Tue, 26 Jun 2012 20:35:30 +0200 Subject: Add support for AAC. --- faad2/src/libfaad/sbr_fbt.c | 764 ++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 764 insertions(+) create mode 100644 faad2/src/libfaad/sbr_fbt.c (limited to 'faad2/src/libfaad/sbr_fbt.c') diff --git a/faad2/src/libfaad/sbr_fbt.c b/faad2/src/libfaad/sbr_fbt.c new file mode 100644 index 0000000..65d7d90 --- /dev/null +++ b/faad2/src/libfaad/sbr_fbt.c @@ -0,0 +1,764 @@ +/* +** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding +** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** Any non-GPL usage of this software or parts of this software is strictly +** forbidden. +** +** The "appropriate copyright message" mentioned in section 2c of the GPLv2 +** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" +** +** Commercial non-GPL licensing of this software is possible. +** For more info contact Nero AG through Mpeg4AAClicense@nero.com. +** +** $Id: sbr_fbt.c,v 1.21 2007/11/01 12:33:35 menno Exp $ +**/ + +/* Calculate frequency band tables */ + +#include "common.h" +#include "structs.h" + +#ifdef SBR_DEC + +#include + +#include "sbr_syntax.h" +#include "sbr_fbt.h" + +/* static function declarations */ +static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1); + + +/* calculate the start QMF channel for the master frequency band table */ +/* parameter is also called k0 */ +uint8_t qmf_start_channel(uint8_t bs_start_freq, uint8_t bs_samplerate_mode, + uint32_t sample_rate) +{ + static const uint8_t startMinTable[12] = { 7, 7, 10, 11, 12, 16, 16, + 17, 24, 32, 35, 48 }; + static const uint8_t offsetIndexTable[12] = { 5, 5, 4, 4, 4, 3, 2, 1, 0, + 6, 6, 6 }; + static const int8_t offset[7][16] = { + { -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7 }, + { -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13 }, + { -5, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, + { -6, -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16 }, + { -4, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20 }, + { -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 20, 24, 28, 33 } + }; + uint8_t startMin = startMinTable[get_sr_index(sample_rate)]; + uint8_t offsetIndex = offsetIndexTable[get_sr_index(sample_rate)]; + +#if 0 /* replaced with table (startMinTable) */ + if (sample_rate >= 64000) + { + startMin = (uint8_t)((5000.*128.)/(float)sample_rate + 0.5); + } else if (sample_rate < 32000) { + startMin = (uint8_t)((3000.*128.)/(float)sample_rate + 0.5); + } else { + startMin = (uint8_t)((4000.*128.)/(float)sample_rate + 0.5); + } +#endif + + if (bs_samplerate_mode) + { + return startMin + offset[offsetIndex][bs_start_freq]; + +#if 0 /* replaced by offsetIndexTable */ + switch (sample_rate) + { + case 16000: + return startMin + offset[0][bs_start_freq]; + case 22050: + return startMin + offset[1][bs_start_freq]; + case 24000: + return startMin + offset[2][bs_start_freq]; + case 32000: + return startMin + offset[3][bs_start_freq]; + default: + if (sample_rate > 64000) + { + return startMin + offset[5][bs_start_freq]; + } else { /* 44100 <= sample_rate <= 64000 */ + return startMin + offset[4][bs_start_freq]; + } + } +#endif + } else { + return startMin + offset[6][bs_start_freq]; + } +} + +static int longcmp(const void *a, const void *b) +{ + return ((int)(*(int32_t*)a - *(int32_t*)b)); +} + +/* calculate the stop QMF channel for the master frequency band table */ +/* parameter is also called k2 */ +uint8_t qmf_stop_channel(uint8_t bs_stop_freq, uint32_t sample_rate, + uint8_t k0) +{ + if (bs_stop_freq == 15) + { + return min(64, k0 * 3); + } else if (bs_stop_freq == 14) { + return min(64, k0 * 2); + } else { + static const uint8_t stopMinTable[12] = { 13, 15, 20, 21, 23, + 32, 32, 35, 48, 64, 70, 96 }; + static const int8_t offset[12][14] = { + { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 37, 44, 51 }, + { 0, 2, 4, 6, 8, 11, 14, 18, 22, 26, 31, 36, 42, 49 }, + { 0, 2, 4, 6, 8, 11, 14, 17, 21, 25, 29, 34, 39, 44 }, + { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 33, 38, 43 }, + { 0, 2, 4, 6, 8, 11, 14, 17, 20, 24, 28, 32, 36, 41 }, + { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, + { 0, 2, 4, 6, 8, 10, 12, 14, 17, 20, 23, 26, 29, 32 }, + { 0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 20, 23, 26, 29 }, + { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16 }, + { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }, + { 0, -1, -2, -3, -4, -5, -6, -6, -6, -6, -6, -6, -6, -6 }, + { 0, -3, -6, -9, -12, -15, -18, -20, -22, -24, -26, -28, -30, -32 } + }; +#if 0 + uint8_t i; + int32_t stopDk[13], stopDk_t[14], k2; +#endif + uint8_t stopMin = stopMinTable[get_sr_index(sample_rate)]; + +#if 0 /* replaced by table lookup */ + if (sample_rate >= 64000) + { + stopMin = (uint8_t)((10000.*128.)/(float)sample_rate + 0.5); + } else if (sample_rate < 32000) { + stopMin = (uint8_t)((6000.*128.)/(float)sample_rate + 0.5); + } else { + stopMin = (uint8_t)((8000.*128.)/(float)sample_rate + 0.5); + } +#endif + +#if 0 /* replaced by table lookup */ + /* diverging power series */ + for (i = 0; i <= 13; i++) + { + stopDk_t[i] = (int32_t)(stopMin*pow(64.0/stopMin, i/13.0) + 0.5); + } + for (i = 0; i < 13; i++) + { + stopDk[i] = stopDk_t[i+1] - stopDk_t[i]; + } + + /* needed? */ + qsort(stopDk, 13, sizeof(stopDk[0]), longcmp); + + k2 = stopMin; + for (i = 0; i < bs_stop_freq; i++) + { + k2 += stopDk[i]; + } + return min(64, k2); +#endif + /* bs_stop_freq <= 13 */ + return min(64, stopMin + offset[get_sr_index(sample_rate)][min(bs_stop_freq, 13)]); + } + + return 0; +} + +/* calculate the master frequency table from k0, k2, bs_freq_scale + and bs_alter_scale + + version for bs_freq_scale = 0 +*/ +uint8_t master_frequency_table_fs0(sbr_info *sbr, uint8_t k0, uint8_t k2, + uint8_t bs_alter_scale) +{ + int8_t incr; + uint8_t k; + uint8_t dk; + uint32_t nrBands, k2Achieved; + int32_t k2Diff, vDk[64] = {0}; + + /* mft only defined for k2 > k0 */ + if (k2 <= k0) + { + sbr->N_master = 0; + return 1; + } + + dk = bs_alter_scale ? 2 : 1; + +#if 0 /* replaced by float-less design */ + nrBands = 2 * (int32_t)((float)(k2-k0)/(dk*2) + (-1+dk)/2.0f); +#else + if (bs_alter_scale) + { + nrBands = (((k2-k0+2)>>2)<<1); + } else { + nrBands = (((k2-k0)>>1)<<1); + } +#endif + nrBands = min(nrBands, 63); + if (nrBands <= 0) + return 1; + + k2Achieved = k0 + nrBands * dk; + k2Diff = k2 - k2Achieved; + for (k = 0; k < nrBands; k++) + vDk[k] = dk; + + if (k2Diff) + { + incr = (k2Diff > 0) ? -1 : 1; + k = (uint8_t) ((k2Diff > 0) ? (nrBands-1) : 0); + + while (k2Diff != 0) + { + vDk[k] -= incr; + k += incr; + k2Diff += incr; + } + } + + sbr->f_master[0] = k0; + for (k = 1; k <= nrBands; k++) + sbr->f_master[k] = (uint8_t)(sbr->f_master[k-1] + vDk[k-1]); + + sbr->N_master = (uint8_t)nrBands; + sbr->N_master = (min(sbr->N_master, 64)); + +#if 0 + printf("f_master[%d]: ", nrBands); + for (k = 0; k <= nrBands; k++) + { + printf("%d ", sbr->f_master[k]); + } + printf("\n"); +#endif + + return 0; +} + +/* + This function finds the number of bands using this formula: + bands * log(a1/a0)/log(2.0) + 0.5 +*/ +static int32_t find_bands(uint8_t warp, uint8_t bands, uint8_t a0, uint8_t a1) +{ +#ifdef FIXED_POINT + /* table with log2() values */ + static const real_t log2Table[65] = { + COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(1.0000000000), COEF_CONST(1.5849625007), + COEF_CONST(2.0000000000), COEF_CONST(2.3219280949), COEF_CONST(2.5849625007), COEF_CONST(2.8073549221), + COEF_CONST(3.0000000000), COEF_CONST(3.1699250014), COEF_CONST(3.3219280949), COEF_CONST(3.4594316186), + COEF_CONST(3.5849625007), COEF_CONST(3.7004397181), COEF_CONST(3.8073549221), COEF_CONST(3.9068905956), + COEF_CONST(4.0000000000), COEF_CONST(4.0874628413), COEF_CONST(4.1699250014), COEF_CONST(4.2479275134), + COEF_CONST(4.3219280949), COEF_CONST(4.3923174228), COEF_CONST(4.4594316186), COEF_CONST(4.5235619561), + COEF_CONST(4.5849625007), COEF_CONST(4.6438561898), COEF_CONST(4.7004397181), COEF_CONST(4.7548875022), + COEF_CONST(4.8073549221), COEF_CONST(4.8579809951), COEF_CONST(4.9068905956), COEF_CONST(4.9541963104), + COEF_CONST(5.0000000000), COEF_CONST(5.0443941194), COEF_CONST(5.0874628413), COEF_CONST(5.1292830169), + COEF_CONST(5.1699250014), COEF_CONST(5.2094533656), COEF_CONST(5.2479275134), COEF_CONST(5.2854022189), + COEF_CONST(5.3219280949), COEF_CONST(5.3575520046), COEF_CONST(5.3923174228), COEF_CONST(5.4262647547), + COEF_CONST(5.4594316186), COEF_CONST(5.4918530963), COEF_CONST(5.5235619561), COEF_CONST(5.5545888517), + COEF_CONST(5.5849625007), COEF_CONST(5.6147098441), COEF_CONST(5.6438561898), COEF_CONST(5.6724253420), + COEF_CONST(5.7004397181), COEF_CONST(5.7279204546), COEF_CONST(5.7548875022), COEF_CONST(5.7813597135), + COEF_CONST(5.8073549221), COEF_CONST(5.8328900142), COEF_CONST(5.8579809951), COEF_CONST(5.8826430494), + COEF_CONST(5.9068905956), COEF_CONST(5.9307373376), COEF_CONST(5.9541963104), COEF_CONST(5.9772799235), + COEF_CONST(6.0) + }; + real_t r0 = log2Table[a0]; /* coef */ + real_t r1 = log2Table[a1]; /* coef */ + real_t r2 = (r1 - r0); /* coef */ + + if (warp) + r2 = MUL_C(r2, COEF_CONST(1.0/1.3)); + + /* convert r2 to real and then multiply and round */ + r2 = (r2 >> (COEF_BITS-REAL_BITS)) * bands + (1<<(REAL_BITS-1)); + + return (r2 >> REAL_BITS); +#else + real_t div = (real_t)log(2.0); + if (warp) div *= (real_t)1.3; + + return (int32_t)(bands * log((float)a1/(float)a0)/div + 0.5); +#endif +} + +static real_t find_initial_power(uint8_t bands, uint8_t a0, uint8_t a1) +{ +#ifdef FIXED_POINT + /* table with log() values */ + static const real_t logTable[65] = { + COEF_CONST(0.0), COEF_CONST(0.0), COEF_CONST(0.6931471806), COEF_CONST(1.0986122887), + COEF_CONST(1.3862943611), COEF_CONST(1.6094379124), COEF_CONST(1.7917594692), COEF_CONST(1.9459101491), + COEF_CONST(2.0794415417), COEF_CONST(2.1972245773), COEF_CONST(2.3025850930), COEF_CONST(2.3978952728), + COEF_CONST(2.4849066498), COEF_CONST(2.5649493575), COEF_CONST(2.6390573296), COEF_CONST(2.7080502011), + COEF_CONST(2.7725887222), COEF_CONST(2.8332133441), COEF_CONST(2.8903717579), COEF_CONST(2.9444389792), + COEF_CONST(2.9957322736), COEF_CONST(3.0445224377), COEF_CONST(3.0910424534), COEF_CONST(3.1354942159), + COEF_CONST(3.1780538303), COEF_CONST(3.2188758249), COEF_CONST(3.2580965380), COEF_CONST(3.2958368660), + COEF_CONST(3.3322045102), COEF_CONST(3.3672958300), COEF_CONST(3.4011973817), COEF_CONST(3.4339872045), + COEF_CONST(3.4657359028), COEF_CONST(3.4965075615), COEF_CONST(3.5263605246), COEF_CONST(3.5553480615), + COEF_CONST(3.5835189385), COEF_CONST(3.6109179126), COEF_CONST(3.6375861597), COEF_CONST(3.6635616461), + COEF_CONST(3.6888794541), COEF_CONST(3.7135720667), COEF_CONST(3.7376696183), COEF_CONST(3.7612001157), + COEF_CONST(3.7841896339), COEF_CONST(3.8066624898), COEF_CONST(3.8286413965), COEF_CONST(3.8501476017), + COEF_CONST(3.8712010109), COEF_CONST(3.8918202981), COEF_CONST(3.9120230054), COEF_CONST(3.9318256327), + COEF_CONST(3.9512437186), COEF_CONST(3.9702919136), COEF_CONST(3.9889840466), COEF_CONST(4.0073331852), + COEF_CONST(4.0253516907), COEF_CONST(4.0430512678), COEF_CONST(4.0604430105), COEF_CONST(4.0775374439), + COEF_CONST(4.0943445622), COEF_CONST(4.1108738642), COEF_CONST(4.1271343850), COEF_CONST(4.1431347264), + COEF_CONST(4.158883083) + }; + /* standard Taylor polynomial coefficients for exp(x) around 0 */ + /* a polynomial around x=1 is more precise, as most values are around 1.07, + but this is just fine already */ + static const real_t c1 = COEF_CONST(1.0); + static const real_t c2 = COEF_CONST(1.0/2.0); + static const real_t c3 = COEF_CONST(1.0/6.0); + static const real_t c4 = COEF_CONST(1.0/24.0); + + real_t r0 = logTable[a0]; /* coef */ + real_t r1 = logTable[a1]; /* coef */ + real_t r2 = (r1 - r0) / bands; /* coef */ + real_t rexp = c1 + MUL_C((c1 + MUL_C((c2 + MUL_C((c3 + MUL_C(c4,r2)), r2)), r2)), r2); + + return (rexp >> (COEF_BITS-REAL_BITS)); /* real */ +#else + return (real_t)pow((real_t)a1/(real_t)a0, 1.0/(real_t)bands); +#endif +} + +/* + version for bs_freq_scale > 0 +*/ +uint8_t master_frequency_table(sbr_info *sbr, uint8_t k0, uint8_t k2, + uint8_t bs_freq_scale, uint8_t bs_alter_scale) +{ + uint8_t k, bands, twoRegions; + uint8_t k1; + uint8_t nrBand0, nrBand1; + int32_t vDk0[64] = {0}, vDk1[64] = {0}; + int32_t vk0[64] = {0}, vk1[64] = {0}; + uint8_t temp1[] = { 6, 5, 4 }; + real_t q, qk; + int32_t A_1; +#ifdef FIXED_POINT + real_t rk2, rk0; +#endif + + /* mft only defined for k2 > k0 */ + if (k2 <= k0) + { + sbr->N_master = 0; + return 1; + } + + bands = temp1[bs_freq_scale-1]; + +#ifdef FIXED_POINT + rk0 = (real_t)k0 << REAL_BITS; + rk2 = (real_t)k2 << REAL_BITS; + if (rk2 > MUL_C(rk0, COEF_CONST(2.2449))) +#else + if ((float)k2/(float)k0 > 2.2449) +#endif + { + twoRegions = 1; + k1 = k0 << 1; + } else { + twoRegions = 0; + k1 = k2; + } + + nrBand0 = (uint8_t)(2 * find_bands(0, bands, k0, k1)); + nrBand0 = min(nrBand0, 63); + if (nrBand0 <= 0) + return 1; + + q = find_initial_power(nrBand0, k0, k1); +#ifdef FIXED_POINT + qk = (real_t)k0 << REAL_BITS; + //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); + A_1 = k0; +#else + qk = REAL_CONST(k0); + A_1 = (int32_t)(qk + .5); +#endif + for (k = 0; k <= nrBand0; k++) + { + int32_t A_0 = A_1; +#ifdef FIXED_POINT + qk = MUL_R(qk,q); + A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); +#else + qk *= q; + A_1 = (int32_t)(qk + 0.5); +#endif + vDk0[k] = A_1 - A_0; + } + + /* needed? */ + qsort(vDk0, nrBand0, sizeof(vDk0[0]), longcmp); + + vk0[0] = k0; + for (k = 1; k <= nrBand0; k++) + { + vk0[k] = vk0[k-1] + vDk0[k-1]; + if (vDk0[k-1] == 0) + return 1; + } + + if (!twoRegions) + { + for (k = 0; k <= nrBand0; k++) + sbr->f_master[k] = (uint8_t) vk0[k]; + + sbr->N_master = nrBand0; + sbr->N_master = min(sbr->N_master, 64); + return 0; + } + + nrBand1 = (uint8_t)(2 * find_bands(1 /* warped */, bands, k1, k2)); + nrBand1 = min(nrBand1, 63); + + q = find_initial_power(nrBand1, k1, k2); +#ifdef FIXED_POINT + qk = (real_t)k1 << REAL_BITS; + //A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); + A_1 = k1; +#else + qk = REAL_CONST(k1); + A_1 = (int32_t)(qk + .5); +#endif + for (k = 0; k <= nrBand1 - 1; k++) + { + int32_t A_0 = A_1; +#ifdef FIXED_POINT + qk = MUL_R(qk,q); + A_1 = (int32_t)((qk + REAL_CONST(0.5)) >> REAL_BITS); +#else + qk *= q; + A_1 = (int32_t)(qk + 0.5); +#endif + vDk1[k] = A_1 - A_0; + } + + if (vDk1[0] < vDk0[nrBand0 - 1]) + { + int32_t change; + + /* needed? */ + qsort(vDk1, nrBand1 + 1, sizeof(vDk1[0]), longcmp); + change = vDk0[nrBand0 - 1] - vDk1[0]; + vDk1[0] = vDk0[nrBand0 - 1]; + vDk1[nrBand1 - 1] = vDk1[nrBand1 - 1] - change; + } + + /* needed? */ + qsort(vDk1, nrBand1, sizeof(vDk1[0]), longcmp); + vk1[0] = k1; + for (k = 1; k <= nrBand1; k++) + { + vk1[k] = vk1[k-1] + vDk1[k-1]; + if (vDk1[k-1] == 0) + return 1; + } + + sbr->N_master = nrBand0 + nrBand1; + sbr->N_master = min(sbr->N_master, 64); + for (k = 0; k <= nrBand0; k++) + { + sbr->f_master[k] = (uint8_t) vk0[k]; + } + for (k = nrBand0 + 1; k <= sbr->N_master; k++) + { + sbr->f_master[k] = (uint8_t) vk1[k - nrBand0]; + } + +#if 0 + printf("f_master[%d]: ", sbr->N_master); + for (k = 0; k <= sbr->N_master; k++) + { + printf("%d ", sbr->f_master[k]); + } + printf("\n"); +#endif + + return 0; +} + +/* calculate the derived frequency border tables from f_master */ +uint8_t derived_frequency_table(sbr_info *sbr, uint8_t bs_xover_band, + uint8_t k2) +{ + uint8_t k, i; + uint32_t minus; + + /* The following relation shall be satisfied: bs_xover_band < N_Master */ + if (sbr->N_master <= bs_xover_band) + return 1; + + sbr->N_high = sbr->N_master - bs_xover_band; + sbr->N_low = (sbr->N_high>>1) + (sbr->N_high - ((sbr->N_high>>1)<<1)); + + sbr->n[0] = sbr->N_low; + sbr->n[1] = sbr->N_high; + + for (k = 0; k <= sbr->N_high; k++) + { + sbr->f_table_res[HI_RES][k] = sbr->f_master[k + bs_xover_band]; + } + + sbr->M = sbr->f_table_res[HI_RES][sbr->N_high] - sbr->f_table_res[HI_RES][0]; + sbr->kx = sbr->f_table_res[HI_RES][0]; + if (sbr->kx > 32) + return 1; + if (sbr->kx + sbr->M > 64) + return 1; + + minus = (sbr->N_high & 1) ? 1 : 0; + + for (k = 0; k <= sbr->N_low; k++) + { + if (k == 0) + i = 0; + else + i = (uint8_t)(2*k - minus); + sbr->f_table_res[LO_RES][k] = sbr->f_table_res[HI_RES][i]; + } + +#if 0 + printf("bs_freq_scale: %d\n", sbr->bs_freq_scale); + printf("bs_limiter_bands: %d\n", sbr->bs_limiter_bands); + printf("f_table_res[HI_RES][%d]: ", sbr->N_high); + for (k = 0; k <= sbr->N_high; k++) + { + printf("%d ", sbr->f_table_res[HI_RES][k]); + } + printf("\n"); +#endif +#if 0 + printf("f_table_res[LO_RES][%d]: ", sbr->N_low); + for (k = 0; k <= sbr->N_low; k++) + { + printf("%d ", sbr->f_table_res[LO_RES][k]); + } + printf("\n"); +#endif + + sbr->N_Q = 0; + if (sbr->bs_noise_bands == 0) + { + sbr->N_Q = 1; + } else { +#if 0 + sbr->N_Q = max(1, (int32_t)(sbr->bs_noise_bands*(log(k2/(float)sbr->kx)/log(2.0)) + 0.5)); +#else + sbr->N_Q = (uint8_t)(max(1, find_bands(0, sbr->bs_noise_bands, sbr->kx, k2))); +#endif + sbr->N_Q = min(5, sbr->N_Q); + } + + for (k = 0; k <= sbr->N_Q; k++) + { + if (k == 0) + { + i = 0; + } else { + /* i = i + (int32_t)((sbr->N_low - i)/(sbr->N_Q + 1 - k)); */ + i = i + (sbr->N_low - i)/(sbr->N_Q + 1 - k); + } + sbr->f_table_noise[k] = sbr->f_table_res[LO_RES][i]; + } + + /* build table for mapping k to g in hf patching */ + for (k = 0; k < 64; k++) + { + uint8_t g; + for (g = 0; g < sbr->N_Q; g++) + { + if ((sbr->f_table_noise[g] <= k) && + (k < sbr->f_table_noise[g+1])) + { + sbr->table_map_k_to_g[k] = g; + break; + } + } + } + +#if 0 + printf("f_table_noise[%d]: ", sbr->N_Q); + for (k = 0; k <= sbr->N_Q; k++) + { + printf("%d ", sbr->f_table_noise[k] - sbr->kx); + } + printf("\n"); +#endif + + return 0; +} + +/* TODO: blegh, ugly */ +/* Modified to calculate for all possible bs_limiter_bands always + * This reduces the number calls to this functions needed (now only on + * header reset) + */ +void limiter_frequency_table(sbr_info *sbr) +{ +#if 0 + static const real_t limiterBandsPerOctave[] = { REAL_CONST(1.2), + REAL_CONST(2), REAL_CONST(3) }; +#else + static const real_t limiterBandsCompare[] = { REAL_CONST(1.327152), + REAL_CONST(1.185093), REAL_CONST(1.119872) }; +#endif + uint8_t k, s; + int8_t nrLim; +#if 0 + real_t limBands; +#endif + + sbr->f_table_lim[0][0] = sbr->f_table_res[LO_RES][0] - sbr->kx; + sbr->f_table_lim[0][1] = sbr->f_table_res[LO_RES][sbr->N_low] - sbr->kx; + sbr->N_L[0] = 1; + +#if 0 + printf("f_table_lim[%d][%d]: ", 0, sbr->N_L[0]); + for (k = 0; k <= sbr->N_L[0]; k++) + { + printf("%d ", sbr->f_table_lim[0][k]); + } + printf("\n"); +#endif + + for (s = 1; s < 4; s++) + { + int32_t limTable[100 /*TODO*/] = {0}; + uint8_t patchBorders[64/*??*/] = {0}; + +#if 0 + limBands = limiterBandsPerOctave[s - 1]; +#endif + + patchBorders[0] = sbr->kx; + for (k = 1; k <= sbr->noPatches; k++) + { + patchBorders[k] = patchBorders[k-1] + sbr->patchNoSubbands[k-1]; + } + + for (k = 0; k <= sbr->N_low; k++) + { + limTable[k] = sbr->f_table_res[LO_RES][k]; + } + for (k = 1; k < sbr->noPatches; k++) + { + limTable[k+sbr->N_low] = patchBorders[k]; + } + + /* needed */ + qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp); + k = 1; + nrLim = sbr->noPatches + sbr->N_low - 1; + + if (nrLim < 0) // TODO: BIG FAT PROBLEM + return; + +restart: + if (k <= nrLim) + { + real_t nOctaves; + + if (limTable[k-1] != 0) +#if 0 + nOctaves = REAL_CONST(log((float)limTable[k]/(float)limTable[k-1])/log(2.0)); +#else +#ifdef FIXED_POINT + nOctaves = DIV_R((limTable[k]<noPatches; i++) + { + if (limTable[k] == patchBorders[i]) + found = 1; + } + if (found) + { + found2 = 0; + for (i = 0; i <= sbr->noPatches; i++) + { + if (limTable[k-1] == patchBorders[i]) + found2 = 1; + } + if (found2) + { + k++; + goto restart; + } else { + /* remove (k-1)th element */ + limTable[k-1] = sbr->f_table_res[LO_RES][sbr->N_low]; + qsort(limTable, sbr->noPatches + sbr->N_low, sizeof(limTable[0]), longcmp); + nrLim--; + goto restart; + } + } + } + /* remove kth element */ + limTable[k] = sbr->f_table_res[LO_RES][sbr->N_low]; + qsort(limTable, nrLim, sizeof(limTable[0]), longcmp); + nrLim--; + goto restart; + } else { + k++; + goto restart; + } + } + + sbr->N_L[s] = nrLim; + for (k = 0; k <= nrLim; k++) + { + sbr->f_table_lim[s][k] = limTable[k] - sbr->kx; + } + +#if 0 + printf("f_table_lim[%d][%d]: ", s, sbr->N_L[s]); + for (k = 0; k <= sbr->N_L[s]; k++) + { + printf("%d ", sbr->f_table_lim[s][k]); + } + printf("\n"); +#endif + } +} + +#endif -- cgit v1.2.3