From cc2160de5cc05dc3aa77f3a34358e66f6193c8c9 Mon Sep 17 00:00:00 2001 From: Michał Cichoń Date: Tue, 26 Jun 2012 20:35:30 +0200 Subject: Add support for AAC. --- faad2/src/libfaad/sbr_hfadj.c | 1748 +++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1748 insertions(+) create mode 100644 faad2/src/libfaad/sbr_hfadj.c (limited to 'faad2/src/libfaad/sbr_hfadj.c') diff --git a/faad2/src/libfaad/sbr_hfadj.c b/faad2/src/libfaad/sbr_hfadj.c new file mode 100644 index 0000000..5036869 --- /dev/null +++ b/faad2/src/libfaad/sbr_hfadj.c @@ -0,0 +1,1748 @@ +/* +** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding +** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** Any non-GPL usage of this software or parts of this software is strictly +** forbidden. +** +** The "appropriate copyright message" mentioned in section 2c of the GPLv2 +** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" +** +** Commercial non-GPL licensing of this software is possible. +** For more info contact Nero AG through Mpeg4AAClicense@nero.com. +** +** $Id: sbr_hfadj.c,v 1.23 2008/09/19 22:50:20 menno Exp $ +**/ + +/* High Frequency adjustment */ + +#include "common.h" +#include "structs.h" + +#ifdef SBR_DEC + +#include "sbr_syntax.h" +#include "sbr_hfadj.h" + +#include "sbr_noise.h" + + +/* static function declarations */ +static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, + qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch); +static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch); +#ifdef SBR_LOW_POWER +static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch); +static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch); +#endif +static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch); + + +uint8_t hf_adjustment(sbr_info *sbr, qmf_t Xsbr[MAX_NTSRHFG][64] +#ifdef SBR_LOW_POWER + ,real_t *deg /* aliasing degree */ +#endif + ,uint8_t ch) +{ + ALIGN sbr_hfadj_info adj = {{{0}}}; + uint8_t ret = 0; + + if (sbr->bs_frame_class[ch] == FIXFIX) + { + sbr->l_A[ch] = -1; + } else if (sbr->bs_frame_class[ch] == VARFIX) { + if (sbr->bs_pointer[ch] > 1) + sbr->l_A[ch] = sbr->bs_pointer[ch] - 1; + else + sbr->l_A[ch] = -1; + } else { + if (sbr->bs_pointer[ch] == 0) + sbr->l_A[ch] = -1; + else + sbr->l_A[ch] = sbr->L_E[ch] + 1 - sbr->bs_pointer[ch]; + } + + ret = estimate_current_envelope(sbr, &adj, Xsbr, ch); + if (ret > 0) + return 1; + + calculate_gain(sbr, &adj, ch); + +#ifdef SBR_LOW_POWER + calc_gain_groups(sbr, &adj, deg, ch); + aliasing_reduction(sbr, &adj, deg, ch); +#endif + + hf_assembly(sbr, &adj, Xsbr, ch); + + return 0; +} + +static uint8_t get_S_mapped(sbr_info *sbr, uint8_t ch, uint8_t l, uint8_t current_band) +{ + if (sbr->f[ch][l] == HI_RES) + { + /* in case of using f_table_high we just have 1 to 1 mapping + * from bs_add_harmonic[l][k] + */ + if ((l >= sbr->l_A[ch]) || + (sbr->bs_add_harmonic_prev[ch][current_band] && sbr->bs_add_harmonic_flag_prev[ch])) + { + return sbr->bs_add_harmonic[ch][current_band]; + } + } else { + uint8_t b, lb, ub; + + /* in case of f_table_low we check if any of the HI_RES bands + * within this LO_RES band has bs_add_harmonic[l][k] turned on + * (note that borders in the LO_RES table are also present in + * the HI_RES table) + */ + + /* find first HI_RES band in current LO_RES band */ + lb = 2*current_band - ((sbr->N_high & 1) ? 1 : 0); + /* find first HI_RES band in next LO_RES band */ + ub = 2*(current_band+1) - ((sbr->N_high & 1) ? 1 : 0); + + /* check all HI_RES bands in current LO_RES band for sinusoid */ + for (b = lb; b < ub; b++) + { + if ((l >= sbr->l_A[ch]) || + (sbr->bs_add_harmonic_prev[ch][b] && sbr->bs_add_harmonic_flag_prev[ch])) + { + if (sbr->bs_add_harmonic[ch][b] == 1) + return 1; + } + } + } + + return 0; +} + +static uint8_t estimate_current_envelope(sbr_info *sbr, sbr_hfadj_info *adj, + qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch) +{ + uint8_t m, l, j, k, k_l, k_h, p; + real_t nrg, div; + + if (sbr->bs_interpol_freq == 1) + { + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t i, l_i, u_i; + + l_i = sbr->t_E[ch][l]; + u_i = sbr->t_E[ch][l+1]; + + div = (real_t)(u_i - l_i); + + if (div == 0) + div = 1; + + for (m = 0; m < sbr->M; m++) + { + nrg = 0; + + for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++) + { +#ifdef FIXED_POINT +#ifdef SBR_LOW_POWER + nrg += ((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS); +#else + nrg += ((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS) + + ((QMF_IM(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_IM(Xsbr[i][m + sbr->kx])+(1<<(REAL_BITS-1)))>>REAL_BITS); +#endif +#else + nrg += MUL_R(QMF_RE(Xsbr[i][m + sbr->kx]), QMF_RE(Xsbr[i][m + sbr->kx])) +#ifndef SBR_LOW_POWER + + MUL_R(QMF_IM(Xsbr[i][m + sbr->kx]), QMF_IM(Xsbr[i][m + sbr->kx])) +#endif + ; +#endif + } + + sbr->E_curr[ch][m][l] = nrg / div; +#ifdef SBR_LOW_POWER +#ifdef FIXED_POINT + sbr->E_curr[ch][m][l] <<= 1; +#else + sbr->E_curr[ch][m][l] *= 2; +#endif +#endif + } + } + } else { + for (l = 0; l < sbr->L_E[ch]; l++) + { + for (p = 0; p < sbr->n[sbr->f[ch][l]]; p++) + { + k_l = sbr->f_table_res[sbr->f[ch][l]][p]; + k_h = sbr->f_table_res[sbr->f[ch][l]][p+1]; + + for (k = k_l; k < k_h; k++) + { + uint8_t i, l_i, u_i; + nrg = 0; + + l_i = sbr->t_E[ch][l]; + u_i = sbr->t_E[ch][l+1]; + + div = (real_t)((u_i - l_i)*(k_h - k_l)); + + if (div == 0) + div = 1; + + for (i = l_i + sbr->tHFAdj; i < u_i + sbr->tHFAdj; i++) + { + for (j = k_l; j < k_h; j++) + { +#ifdef FIXED_POINT +#ifdef SBR_LOW_POWER + nrg += ((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS); +#else + nrg += ((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_RE(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS) + + ((QMF_IM(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS)*((QMF_IM(Xsbr[i][j])+(1<<(REAL_BITS-1)))>>REAL_BITS); +#endif +#else + nrg += MUL_R(QMF_RE(Xsbr[i][j]), QMF_RE(Xsbr[i][j])) +#ifndef SBR_LOW_POWER + + MUL_R(QMF_IM(Xsbr[i][j]), QMF_IM(Xsbr[i][j])) +#endif + ; +#endif + } + } + + sbr->E_curr[ch][k - sbr->kx][l] = nrg / div; +#ifdef SBR_LOW_POWER +#ifdef FIXED_POINT + sbr->E_curr[ch][k - sbr->kx][l] <<= 1; +#else + sbr->E_curr[ch][k - sbr->kx][l] *= 2; +#endif +#endif + } + } + } + } + + return 0; +} + +#ifdef FIXED_POINT +#define EPS (1) /* smallest number available in fixed point */ +#else +#define EPS (1e-12) +#endif + + + +#ifdef FIXED_POINT + +/* log2 values of [0..63] */ +static const real_t log2_int_tab[] = { + LOG2_MIN_INF, REAL_CONST(0.000000000000000), REAL_CONST(1.000000000000000), REAL_CONST(1.584962500721156), + REAL_CONST(2.000000000000000), REAL_CONST(2.321928094887362), REAL_CONST(2.584962500721156), REAL_CONST(2.807354922057604), + REAL_CONST(3.000000000000000), REAL_CONST(3.169925001442313), REAL_CONST(3.321928094887363), REAL_CONST(3.459431618637297), + REAL_CONST(3.584962500721156), REAL_CONST(3.700439718141092), REAL_CONST(3.807354922057604), REAL_CONST(3.906890595608519), + REAL_CONST(4.000000000000000), REAL_CONST(4.087462841250339), REAL_CONST(4.169925001442312), REAL_CONST(4.247927513443585), + REAL_CONST(4.321928094887362), REAL_CONST(4.392317422778761), REAL_CONST(4.459431618637297), REAL_CONST(4.523561956057013), + REAL_CONST(4.584962500721156), REAL_CONST(4.643856189774724), REAL_CONST(4.700439718141093), REAL_CONST(4.754887502163468), + REAL_CONST(4.807354922057604), REAL_CONST(4.857980995127572), REAL_CONST(4.906890595608519), REAL_CONST(4.954196310386875), + REAL_CONST(5.000000000000000), REAL_CONST(5.044394119358453), REAL_CONST(5.087462841250340), REAL_CONST(5.129283016944966), + REAL_CONST(5.169925001442312), REAL_CONST(5.209453365628949), REAL_CONST(5.247927513443585), REAL_CONST(5.285402218862248), + REAL_CONST(5.321928094887363), REAL_CONST(5.357552004618084), REAL_CONST(5.392317422778761), REAL_CONST(5.426264754702098), + REAL_CONST(5.459431618637297), REAL_CONST(5.491853096329675), REAL_CONST(5.523561956057013), REAL_CONST(5.554588851677637), + REAL_CONST(5.584962500721156), REAL_CONST(5.614709844115208), REAL_CONST(5.643856189774724), REAL_CONST(5.672425341971495), + REAL_CONST(5.700439718141093), REAL_CONST(5.727920454563200), REAL_CONST(5.754887502163469), REAL_CONST(5.781359713524660), + REAL_CONST(5.807354922057605), REAL_CONST(5.832890014164742), REAL_CONST(5.857980995127572), REAL_CONST(5.882643049361842), + REAL_CONST(5.906890595608518), REAL_CONST(5.930737337562887), REAL_CONST(5.954196310386876), REAL_CONST(5.977279923499916) +}; + +static const real_t pan_log2_tab[] = { + REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), + REAL_CONST(0.044394119358453), REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), REAL_CONST(0.002815015607054), + REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), + REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667) +}; + +static real_t find_log2_E(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) +{ + /* check for coupled energy/noise data */ + if (sbr->bs_coupling == 1) + { + uint8_t amp0 = (sbr->amp_res[0]) ? 0 : 1; + uint8_t amp1 = (sbr->amp_res[1]) ? 0 : 1; + real_t tmp = (7 << REAL_BITS) + (sbr->E[0][k][l] << (REAL_BITS-amp0)); + real_t pan; + + /* E[1] should always be even so shifting is OK */ + uint8_t E = sbr->E[1][k][l] >> amp1; + + if (ch == 0) + { + if (E > 12) + { + /* negative */ + pan = pan_log2_tab[-12 + E]; + } else { + /* positive */ + pan = pan_log2_tab[12 - E] + ((12 - E)<amp_res[ch]) ? 0 : 1; + + return (6 << REAL_BITS) + (sbr->E[ch][k][l] << (REAL_BITS-amp)); + } +} + +static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) +{ + /* check for coupled energy/noise data */ + if (sbr->bs_coupling == 1) + { + real_t tmp = (7 << REAL_BITS) - (sbr->Q[0][k][l] << REAL_BITS); + real_t pan; + + uint8_t Q = sbr->Q[1][k][l]; + + if (ch == 0) + { + if (Q > 12) + { + /* negative */ + pan = pan_log2_tab[-12 + Q]; + } else { + /* positive */ + pan = pan_log2_tab[12 - Q] + ((12 - Q)<Q[ch][k][l] << REAL_BITS); + } +} + +static const real_t log_Qplus1_pan[31][13] = { + { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) }, + { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) }, + { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) }, + { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) }, + { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) }, + { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) }, + { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) }, + { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) }, + { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) }, + { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) }, + { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) }, + { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) }, + { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) }, + { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) }, + { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) }, + { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) }, + { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) }, + { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) }, + { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) } +}; + +static const real_t log_Qplus1[31] = { + REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339), + REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156), + REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), + REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453), + REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), + REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), + REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), + REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667), + REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551), + REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641), + REAL_CONST(0.000000000000000) +}; + +static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) +{ + /* check for coupled energy/noise data */ + if (sbr->bs_coupling == 1) + { + if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) && + (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24)) + { + if (ch == 0) + { + return log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]; + } else { + return log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]; + } + } else { + return 0; + } + } else { + if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30) + { + return log_Qplus1[sbr->Q[ch][k][l]]; + } else { + return 0; + } + } +} + +static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) +{ + /* log2 values of limiter gains */ + static real_t limGain[] = { + REAL_CONST(-1.0), REAL_CONST(0.0), REAL_CONST(1.0), REAL_CONST(33.219) + }; + uint8_t m, l, k; + + uint8_t current_t_noise_band = 0; + uint8_t S_mapped; + + ALIGN real_t Q_M_lim[MAX_M]; + ALIGN real_t G_lim[MAX_M]; + ALIGN real_t G_boost; + ALIGN real_t S_M[MAX_M]; + + + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t current_f_noise_band = 0; + uint8_t current_res_band = 0; + uint8_t current_res_band2 = 0; + uint8_t current_hi_res_band = 0; + + real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; + + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + + if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) + { + current_t_noise_band++; + } + + for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) + { + real_t Q_M = 0; + real_t G_max; + real_t den = 0; + real_t acc1 = 0; + real_t acc2 = 0; + uint8_t current_res_band_size = 0; + uint8_t Q_M_size = 0; + + uint8_t ml1, ml2; + + /* bounds of current limiter bands */ + ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; + ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; + + + /* calculate the accumulated E_orig and E_curr over the limiter band */ + for (m = ml1; m < ml2; m++) + { + if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) + { + current_res_band_size++; + } else { + acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)); + + current_res_band++; + current_res_band_size = 1; + } + + acc2 += sbr->E_curr[ch][m][l]; + } + acc1 += pow2_int(-REAL_CONST(10) + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch)); + + + if (acc1 == 0) + acc1 = LOG2_MIN_INF; + else + acc1 = log2_int(acc1); + + + /* calculate the maximum gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + G_max = acc1 - log2_int(acc2) + limGain[sbr->bs_limiter_gains]; + G_max = min(G_max, limGain[3]); + + + for (m = ml1; m < ml2; m++) + { + real_t G; + real_t E_curr, E_orig; + real_t Q_orig, Q_orig_plus1; + uint8_t S_index_mapped; + + + /* check if m is on a noise band border */ + if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) + { + /* step to next noise band */ + current_f_noise_band++; + } + + + /* check if m is on a resolution band border */ + if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) + { + /* accumulate a whole range of equal Q_Ms */ + if (Q_M_size > 0) + den += pow2_int(log2_int_tab[Q_M_size] + Q_M); + Q_M_size = 0; + + /* step to next resolution band */ + current_res_band2++; + + /* if we move to a new resolution band, we should check if we are + * going to add a sinusoid in this band + */ + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + } + + + /* check if m is on a HI_RES band border */ + if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) + { + /* step to next HI_RES band */ + current_hi_res_band++; + } + + + /* find S_index_mapped + * S_index_mapped can only be 1 for the m in the middle of the + * current HI_RES band + */ + S_index_mapped = 0; + if ((l >= sbr->l_A[ch]) || + (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) + { + /* find the middle subband of the HI_RES frequency band */ + if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) + S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; + } + + + /* find bitstream parameters */ + if (sbr->E_curr[ch][m][l] == 0) + E_curr = LOG2_MIN_INF; + else + E_curr = log2_int(sbr->E_curr[ch][m][l]); + E_orig = -REAL_CONST(10) + find_log2_E(sbr, current_res_band2, l, ch); + + + Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch); + Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch); + + + /* Q_M only depends on E_orig and Q_div2: + * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on + * a change of current res band (HI or LO) + */ + Q_M = E_orig + Q_orig - Q_orig_plus1; + + + /* S_M only depends on E_orig, Q_div and S_index_mapped: + * S_index_mapped can only be non-zero once per HI_RES band + */ + if (S_index_mapped == 0) + { + S_M[m] = LOG2_MIN_INF; /* -inf */ + } else { + S_M[m] = E_orig - Q_orig_plus1; + + /* accumulate sinusoid part of the total energy */ + den += pow2_int(S_M[m]); + } + + + /* calculate gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */ + /* scaled by -10 */ + G = E_orig - max(-REAL_CONST(10), E_curr); + if ((S_mapped == 0) && (delta == 1)) + { + /* G = G * 1/(1+Q) */ + G -= Q_orig_plus1; + } else if (S_mapped == 1) { + /* G = G * Q/(1+Q) */ + G += Q_orig - Q_orig_plus1; + } + + + /* limit the additional noise energy level */ + /* and apply the limiter */ + if (G_max > G) + { + Q_M_lim[m] = Q_M; + G_lim[m] = G; + + if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) + { + Q_M_size++; + } + } else { + /* G > G_max */ + Q_M_lim[m] = Q_M + G_max - G; + G_lim[m] = G_max; + + /* accumulate limited Q_M */ + if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) + { + den += pow2_int(Q_M_lim[m]); + } + } + + + /* accumulate the total energy */ + /* E_curr changes for every m so we do need to accumulate every m */ + den += pow2_int(E_curr + G_lim[m]); + } + + /* accumulate last range of equal Q_Ms */ + if (Q_M_size > 0) + { + den += pow2_int(log2_int_tab[Q_M_size] + Q_M); + } + + + /* calculate the final gain */ + /* G_boost: [0..2.51188643] */ + G_boost = acc1 - log2_int(den /*+ EPS*/); + G_boost = min(G_boost, REAL_CONST(1.328771237) /* log2(1.584893192 ^ 2) */); + + + for (m = ml1; m < ml2; m++) + { + /* apply compensation to gain, noise floor sf's and sinusoid levels */ +#ifndef SBR_LOW_POWER + adj->G_lim_boost[l][m] = pow2_fix((G_lim[m] + G_boost) >> 1); +#else + /* sqrt() will be done after the aliasing reduction to save a + * few multiplies + */ + adj->G_lim_boost[l][m] = pow2_fix(G_lim[m] + G_boost); +#endif + adj->Q_M_lim_boost[l][m] = pow2_fix((Q_M_lim[m] + G_boost) >> 1); + + if (S_M[m] != LOG2_MIN_INF) + { + adj->S_M_boost[l][m] = pow2_int((S_M[m] + G_boost) >> 1); + } else { + adj->S_M_boost[l][m] = 0; + } + } + } + } +} + +#else + +//#define LOG2_TEST + +#ifdef LOG2_TEST + +#define LOG2_MIN_INF -100000 + +__inline float pow2(float val) +{ + return pow(2.0, val); +} +__inline float log2(float val) +{ + return log(val)/log(2.0); +} + +#define RB 14 + +float QUANTISE2REAL(float val) +{ + __int32 ival = (__int32)(val * (1<bs_coupling == 1) + { + real_t amp0 = (sbr->amp_res[0]) ? 1.0 : 0.5; + real_t amp1 = (sbr->amp_res[1]) ? 1.0 : 0.5; + float tmp = QUANTISE2REAL(7.0 + (real_t)sbr->E[0][k][l] * amp0); + float pan; + + int E = (int)(sbr->E[1][k][l] * amp1); + + if (ch == 0) + { + if (E > 12) + { + /* negative */ + pan = QUANTISE2REAL(pan_log2_tab[-12 + E]); + } else { + /* positive */ + pan = QUANTISE2REAL(pan_log2_tab[12 - E] + (12 - E)); + } + } else { + if (E < 12) + { + /* negative */ + pan = QUANTISE2REAL(pan_log2_tab[-E + 12]); + } else { + /* positive */ + pan = QUANTISE2REAL(pan_log2_tab[E - 12] + (E - 12)); + } + } + + /* tmp / pan in log2 */ + return QUANTISE2REAL(tmp - pan); + } else { + real_t amp = (sbr->amp_res[ch]) ? 1.0 : 0.5; + + return QUANTISE2REAL(6.0 + (real_t)sbr->E[ch][k][l] * amp); + } +} + +static real_t find_log2_Q(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) +{ + /* check for coupled energy/noise data */ + if (sbr->bs_coupling == 1) + { + float tmp = QUANTISE2REAL(7.0 - (real_t)sbr->Q[0][k][l]); + float pan; + + int Q = (int)(sbr->Q[1][k][l]); + + if (ch == 0) + { + if (Q > 12) + { + /* negative */ + pan = QUANTISE2REAL(pan_log2_tab[-12 + Q]); + } else { + /* positive */ + pan = QUANTISE2REAL(pan_log2_tab[12 - Q] + (12 - Q)); + } + } else { + if (Q < 12) + { + /* negative */ + pan = QUANTISE2REAL(pan_log2_tab[-Q + 12]); + } else { + /* positive */ + pan = QUANTISE2REAL(pan_log2_tab[Q - 12] + (Q - 12)); + } + } + + /* tmp / pan in log2 */ + return QUANTISE2REAL(tmp - pan); + } else { + return QUANTISE2REAL(6.0 - (real_t)sbr->Q[ch][k][l]); + } +} + +static const real_t log_Qplus1_pan[31][13] = { + { REAL_CONST(0.044383447617292), REAL_CONST(0.169768601655960), REAL_CONST(0.583090126514435), REAL_CONST(1.570089221000671), REAL_CONST(3.092446088790894), REAL_CONST(4.733354568481445), REAL_CONST(6.022367954254150), REAL_CONST(6.692092418670654), REAL_CONST(6.924463272094727), REAL_CONST(6.989034175872803), REAL_CONST(7.005646705627441), REAL_CONST(7.009829998016357), REAL_CONST(7.010877609252930) }, + { REAL_CONST(0.022362394258380), REAL_CONST(0.087379962205887), REAL_CONST(0.320804953575134), REAL_CONST(0.988859415054321), REAL_CONST(2.252387046813965), REAL_CONST(3.786596298217773), REAL_CONST(5.044394016265869), REAL_CONST(5.705977916717529), REAL_CONST(5.936291694641113), REAL_CONST(6.000346660614014), REAL_CONST(6.016829967498779), REAL_CONST(6.020981311798096), REAL_CONST(6.022020816802979) }, + { REAL_CONST(0.011224525049329), REAL_CONST(0.044351425021887), REAL_CONST(0.169301137328148), REAL_CONST(0.577544987201691), REAL_CONST(1.527246952056885), REAL_CONST(2.887525320053101), REAL_CONST(4.087462902069092), REAL_CONST(4.733354568481445), REAL_CONST(4.959661006927490), REAL_CONST(5.022709369659424), REAL_CONST(5.038940429687500), REAL_CONST(5.043028831481934), REAL_CONST(5.044052600860596) }, + { REAL_CONST(0.005623178556561), REAL_CONST(0.022346137091517), REAL_CONST(0.087132595479488), REAL_CONST(0.317482173442841), REAL_CONST(0.956931233406067), REAL_CONST(2.070389270782471), REAL_CONST(3.169924974441528), REAL_CONST(3.786596298217773), REAL_CONST(4.005294322967529), REAL_CONST(4.066420555114746), REAL_CONST(4.082170009613037), REAL_CONST(4.086137294769287), REAL_CONST(4.087131500244141) }, + { REAL_CONST(0.002814328996465), REAL_CONST(0.011216334067285), REAL_CONST(0.044224001467228), REAL_CONST(0.167456731200218), REAL_CONST(0.556393325328827), REAL_CONST(1.378511548042297), REAL_CONST(2.321928024291992), REAL_CONST(2.887525320053101), REAL_CONST(3.092446088790894), REAL_CONST(3.150059700012207), REAL_CONST(3.164926528930664), REAL_CONST(3.168673276901245), REAL_CONST(3.169611930847168) }, + { REAL_CONST(0.001407850766554), REAL_CONST(0.005619067233056), REAL_CONST(0.022281449288130), REAL_CONST(0.086156636476517), REAL_CONST(0.304854571819305), REAL_CONST(0.847996890544891), REAL_CONST(1.584962487220764), REAL_CONST(2.070389270782471), REAL_CONST(2.252387046813965), REAL_CONST(2.304061651229858), REAL_CONST(2.317430257797241), REAL_CONST(2.320801734924316), REAL_CONST(2.321646213531494) }, + { REAL_CONST(0.000704097095877), REAL_CONST(0.002812269143760), REAL_CONST(0.011183738708496), REAL_CONST(0.043721374124289), REAL_CONST(0.160464659333229), REAL_CONST(0.485426813364029), REAL_CONST(1.000000000000000), REAL_CONST(1.378511548042297), REAL_CONST(1.527246952056885), REAL_CONST(1.570089221000671), REAL_CONST(1.581215262413025), REAL_CONST(1.584023833274841), REAL_CONST(1.584727644920349) }, + { REAL_CONST(0.000352177477907), REAL_CONST(0.001406819908880), REAL_CONST(0.005602621007711), REAL_CONST(0.022026389837265), REAL_CONST(0.082462236285210), REAL_CONST(0.263034462928772), REAL_CONST(0.584962487220764), REAL_CONST(0.847996890544891), REAL_CONST(0.956931233406067), REAL_CONST(0.988859415054321), REAL_CONST(0.997190535068512), REAL_CONST(0.999296069145203), REAL_CONST(0.999823868274689) }, + { REAL_CONST(0.000176099492819), REAL_CONST(0.000703581434209), REAL_CONST(0.002804030198604), REAL_CONST(0.011055230163038), REAL_CONST(0.041820213198662), REAL_CONST(0.137503549456596), REAL_CONST(0.321928083896637), REAL_CONST(0.485426813364029), REAL_CONST(0.556393325328827), REAL_CONST(0.577544987201691), REAL_CONST(0.583090126514435), REAL_CONST(0.584493279457092), REAL_CONST(0.584845066070557) }, + { REAL_CONST(0.000088052431238), REAL_CONST(0.000351833587047), REAL_CONST(0.001402696361765), REAL_CONST(0.005538204684854), REAL_CONST(0.021061634644866), REAL_CONST(0.070389263331890), REAL_CONST(0.169925004243851), REAL_CONST(0.263034462928772), REAL_CONST(0.304854571819305), REAL_CONST(0.317482173442841), REAL_CONST(0.320804953575134), REAL_CONST(0.321646571159363), REAL_CONST(0.321857661008835) }, + { REAL_CONST(0.000044026888645), REAL_CONST(0.000175927518285), REAL_CONST(0.000701518612914), REAL_CONST(0.002771759871393), REAL_CONST(0.010569252073765), REAL_CONST(0.035623874515295), REAL_CONST(0.087462842464447), REAL_CONST(0.137503549456596), REAL_CONST(0.160464659333229), REAL_CONST(0.167456731200218), REAL_CONST(0.169301137328148), REAL_CONST(0.169768601655960), REAL_CONST(0.169885858893394) }, + { REAL_CONST(0.000022013611670), REAL_CONST(0.000088052431238), REAL_CONST(0.000350801943569), REAL_CONST(0.001386545598507), REAL_CONST(0.005294219125062), REAL_CONST(0.017921976745129), REAL_CONST(0.044394120573997), REAL_CONST(0.070389263331890), REAL_CONST(0.082462236285210), REAL_CONST(0.086156636476517), REAL_CONST(0.087132595479488), REAL_CONST(0.087379962205887), REAL_CONST(0.087442122399807) }, + { REAL_CONST(0.000011006847672), REAL_CONST(0.000044026888645), REAL_CONST(0.000175411638338), REAL_CONST(0.000693439331371), REAL_CONST(0.002649537986144), REAL_CONST(0.008988817222416), REAL_CONST(0.022367812693119), REAL_CONST(0.035623874515295), REAL_CONST(0.041820213198662), REAL_CONST(0.043721374124289), REAL_CONST(0.044224001467228), REAL_CONST(0.044351425021887), REAL_CONST(0.044383447617292) }, + { REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000087708482170), REAL_CONST(0.000346675369656), REAL_CONST(0.001325377263129), REAL_CONST(0.004501323681325), REAL_CONST(0.011227255687118), REAL_CONST(0.017921976745129), REAL_CONST(0.021061634644866), REAL_CONST(0.022026389837265), REAL_CONST(0.022281449288130), REAL_CONST(0.022346137091517), REAL_CONST(0.022362394258380) }, + { REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043854910473), REAL_CONST(0.000173348103999), REAL_CONST(0.000662840844598), REAL_CONST(0.002252417383716), REAL_CONST(0.005624548997730), REAL_CONST(0.008988817222416), REAL_CONST(0.010569252073765), REAL_CONST(0.011055230163038), REAL_CONST(0.011183738708496), REAL_CONST(0.011216334067285), REAL_CONST(0.011224525049329) }, + { REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000022013611670), REAL_CONST(0.000086676649516), REAL_CONST(0.000331544462824), REAL_CONST(0.001126734190620), REAL_CONST(0.002815015614033), REAL_CONST(0.004501323681325), REAL_CONST(0.005294219125062), REAL_CONST(0.005538204684854), REAL_CONST(0.005602621007711), REAL_CONST(0.005619067233056), REAL_CONST(0.005623178556561) }, + { REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000011006847672), REAL_CONST(0.000043338975956), REAL_CONST(0.000165781748365), REAL_CONST(0.000563477107789), REAL_CONST(0.001408194424585), REAL_CONST(0.002252417383716), REAL_CONST(0.002649537986144), REAL_CONST(0.002771759871393), REAL_CONST(0.002804030198604), REAL_CONST(0.002812269143760), REAL_CONST(0.002814328996465) }, + { REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000021669651687), REAL_CONST(0.000082893253420), REAL_CONST(0.000281680084299), REAL_CONST(0.000704268983100), REAL_CONST(0.001126734190620), REAL_CONST(0.001325377263129), REAL_CONST(0.001386545598507), REAL_CONST(0.001402696361765), REAL_CONST(0.001406819908880), REAL_CONST(0.001407850766554) }, + { REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010834866771), REAL_CONST(0.000041447223339), REAL_CONST(0.000140846910654), REAL_CONST(0.000352177477907), REAL_CONST(0.000563477107789), REAL_CONST(0.000662840844598), REAL_CONST(0.000693439331371), REAL_CONST(0.000701518612914), REAL_CONST(0.000703581434209), REAL_CONST(0.000704097095877) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005503434295), REAL_CONST(0.000020637769921), REAL_CONST(0.000070511166996), REAL_CONST(0.000176099492819), REAL_CONST(0.000281680084299), REAL_CONST(0.000331544462824), REAL_CONST(0.000346675369656), REAL_CONST(0.000350801943569), REAL_CONST(0.000351833587047), REAL_CONST(0.000352177477907) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002751719876), REAL_CONST(0.000010318922250), REAL_CONST(0.000035256012779), REAL_CONST(0.000088052431238), REAL_CONST(0.000140846910654), REAL_CONST(0.000165781748365), REAL_CONST(0.000173348103999), REAL_CONST(0.000175411638338), REAL_CONST(0.000175927518285), REAL_CONST(0.000176099492819) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000005159470220), REAL_CONST(0.000017542124624), REAL_CONST(0.000044026888645), REAL_CONST(0.000070511166996), REAL_CONST(0.000082893253420), REAL_CONST(0.000086676649516), REAL_CONST(0.000087708482170), REAL_CONST(0.000088052431238), REAL_CONST(0.000088052431238) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002579737384), REAL_CONST(0.000008771088687), REAL_CONST(0.000022013611670), REAL_CONST(0.000035256012779), REAL_CONST(0.000041447223339), REAL_CONST(0.000043338975956), REAL_CONST(0.000043854910473), REAL_CONST(0.000044026888645), REAL_CONST(0.000044026888645) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001375860506), REAL_CONST(0.000004471542070), REAL_CONST(0.000011006847672), REAL_CONST(0.000017542124624), REAL_CONST(0.000020637769921), REAL_CONST(0.000021669651687), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670), REAL_CONST(0.000022013611670) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000687930424), REAL_CONST(0.000002235772627), REAL_CONST(0.000005503434295), REAL_CONST(0.000008771088687), REAL_CONST(0.000010318922250), REAL_CONST(0.000010834866771), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672), REAL_CONST(0.000011006847672) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000001031895522), REAL_CONST(0.000002751719876), REAL_CONST(0.000004471542070), REAL_CONST(0.000005159470220), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295), REAL_CONST(0.000005503434295) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000515947875), REAL_CONST(0.000001375860506), REAL_CONST(0.000002235772627), REAL_CONST(0.000002579737384), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876), REAL_CONST(0.000002751719876) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000343965269), REAL_CONST(0.000000687930424), REAL_CONST(0.000001031895522), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506), REAL_CONST(0.000001375860506) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000515947875), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424), REAL_CONST(0.000000687930424) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269), REAL_CONST(0.000000343965269) }, + { REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000000000000), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634), REAL_CONST(0.000000171982634) } +}; + +static const real_t log_Qplus1[31] = { + REAL_CONST(6.022367813028454), REAL_CONST(5.044394119358453), REAL_CONST(4.087462841250339), + REAL_CONST(3.169925001442313), REAL_CONST(2.321928094887362), REAL_CONST(1.584962500721156), + REAL_CONST(1.000000000000000), REAL_CONST(0.584962500721156), REAL_CONST(0.321928094887362), + REAL_CONST(0.169925001442312), REAL_CONST(0.087462841250339), REAL_CONST(0.044394119358453), + REAL_CONST(0.022367813028455), REAL_CONST(0.011227255423254), REAL_CONST(0.005624549193878), + REAL_CONST(0.002815015607054), REAL_CONST(0.001408194392808), REAL_CONST(0.000704269011247), + REAL_CONST(0.000352177480301), REAL_CONST(0.000176099486443), REAL_CONST(0.000088052430122), + REAL_CONST(0.000044026886827), REAL_CONST(0.000022013611360), REAL_CONST(0.000011006847667), + REAL_CONST(0.000005503434331), REAL_CONST(0.000002751719790), REAL_CONST(0.000001375860551), + REAL_CONST(0.000000687930439), REAL_CONST(0.000000343965261), REAL_CONST(0.000000171982641), + REAL_CONST(0.000000000000000) +}; + +static real_t find_log2_Qplus1(sbr_info *sbr, uint8_t k, uint8_t l, uint8_t ch) +{ + /* check for coupled energy/noise data */ + if (sbr->bs_coupling == 1) + { + if ((sbr->Q[0][k][l] >= 0) && (sbr->Q[0][k][l] <= 30) && + (sbr->Q[1][k][l] >= 0) && (sbr->Q[1][k][l] <= 24)) + { + if (ch == 0) + { + return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][sbr->Q[1][k][l] >> 1]); + } else { + return QUANTISE2REAL(log_Qplus1_pan[sbr->Q[0][k][l]][12 - (sbr->Q[1][k][l] >> 1)]); + } + } else { + return 0; + } + } else { + if (sbr->Q[ch][k][l] >= 0 && sbr->Q[ch][k][l] <= 30) + { + return QUANTISE2REAL(log_Qplus1[sbr->Q[ch][k][l]]); + } else { + return 0; + } + } +} + +static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) +{ + /* log2 values of limiter gains */ + static real_t limGain[] = { -1.0, 0.0, 1.0, 33.219 }; + uint8_t m, l, k; + + uint8_t current_t_noise_band = 0; + uint8_t S_mapped; + + ALIGN real_t Q_M_lim[MAX_M]; + ALIGN real_t G_lim[MAX_M]; + ALIGN real_t G_boost; + ALIGN real_t S_M[MAX_M]; + + + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t current_f_noise_band = 0; + uint8_t current_res_band = 0; + uint8_t current_res_band2 = 0; + uint8_t current_hi_res_band = 0; + + real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; + + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + + if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) + { + current_t_noise_band++; + } + + for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) + { + real_t Q_M = 0; + real_t G_max; + real_t den = 0; + real_t acc1 = 0; + real_t acc2 = 0; + uint8_t current_res_band_size = 0; + uint8_t Q_M_size = 0; + + uint8_t ml1, ml2; + + /* bounds of current limiter bands */ + ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; + ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; + + + /* calculate the accumulated E_orig and E_curr over the limiter band */ + for (m = ml1; m < ml2; m++) + { + if ((m + sbr->kx) < sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) + { + current_res_band_size++; + } else { + acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch))); + + current_res_band++; + current_res_band_size = 1; + } + + acc2 += QUANTISE2INT(sbr->E_curr[ch][m][l]/1024.0); + } + acc1 += QUANTISE2INT(pow2(-10 + log2_int_tab[current_res_band_size] + find_log2_E(sbr, current_res_band, l, ch))); + + acc1 = QUANTISE2REAL( log2(EPS + acc1) ); + + + /* calculate the maximum gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + G_max = acc1 - QUANTISE2REAL(log2(EPS + acc2)) + QUANTISE2REAL(limGain[sbr->bs_limiter_gains]); + G_max = min(G_max, QUANTISE2REAL(limGain[3])); + + + for (m = ml1; m < ml2; m++) + { + real_t G; + real_t E_curr, E_orig; + real_t Q_orig, Q_orig_plus1; + uint8_t S_index_mapped; + + + /* check if m is on a noise band border */ + if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) + { + /* step to next noise band */ + current_f_noise_band++; + } + + + /* check if m is on a resolution band border */ + if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) + { + /* accumulate a whole range of equal Q_Ms */ + if (Q_M_size > 0) + den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M)); + Q_M_size = 0; + + /* step to next resolution band */ + current_res_band2++; + + /* if we move to a new resolution band, we should check if we are + * going to add a sinusoid in this band + */ + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + } + + + /* check if m is on a HI_RES band border */ + if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) + { + /* step to next HI_RES band */ + current_hi_res_band++; + } + + + /* find S_index_mapped + * S_index_mapped can only be 1 for the m in the middle of the + * current HI_RES band + */ + S_index_mapped = 0; + if ((l >= sbr->l_A[ch]) || + (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) + { + /* find the middle subband of the HI_RES frequency band */ + if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) + S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; + } + + + /* find bitstream parameters */ + if (sbr->E_curr[ch][m][l] == 0) + E_curr = LOG2_MIN_INF; + else + E_curr = -10 + log2(sbr->E_curr[ch][m][l]); + E_orig = -10 + find_log2_E(sbr, current_res_band2, l, ch); + + Q_orig = find_log2_Q(sbr, current_f_noise_band, current_t_noise_band, ch); + Q_orig_plus1 = find_log2_Qplus1(sbr, current_f_noise_band, current_t_noise_band, ch); + + + /* Q_M only depends on E_orig and Q_div2: + * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on + * a change of current res band (HI or LO) + */ + Q_M = E_orig + Q_orig - Q_orig_plus1; + + + /* S_M only depends on E_orig, Q_div and S_index_mapped: + * S_index_mapped can only be non-zero once per HI_RES band + */ + if (S_index_mapped == 0) + { + S_M[m] = LOG2_MIN_INF; /* -inf */ + } else { + S_M[m] = E_orig - Q_orig_plus1; + + /* accumulate sinusoid part of the total energy */ + den += pow2(S_M[m]); + } + + + /* calculate gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + /* E_curr here is officially E_curr+1 so the log2() of that can never be < 0 */ + /* scaled by -10 */ + G = E_orig - max(-10, E_curr); + if ((S_mapped == 0) && (delta == 1)) + { + /* G = G * 1/(1+Q) */ + G -= Q_orig_plus1; + } else if (S_mapped == 1) { + /* G = G * Q/(1+Q) */ + G += Q_orig - Q_orig_plus1; + } + + + /* limit the additional noise energy level */ + /* and apply the limiter */ + if (G_max > G) + { + Q_M_lim[m] = QUANTISE2REAL(Q_M); + G_lim[m] = QUANTISE2REAL(G); + + if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) + { + Q_M_size++; + } + } else { + /* G > G_max */ + Q_M_lim[m] = QUANTISE2REAL(Q_M) + G_max - QUANTISE2REAL(G); + G_lim[m] = G_max; + + /* accumulate limited Q_M */ + if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) + { + den += QUANTISE2INT(pow2(Q_M_lim[m])); + } + } + + + /* accumulate the total energy */ + /* E_curr changes for every m so we do need to accumulate every m */ + den += QUANTISE2INT(pow2(E_curr + G_lim[m])); + } + + /* accumulate last range of equal Q_Ms */ + if (Q_M_size > 0) + { + den += QUANTISE2INT(pow2(log2_int_tab[Q_M_size] + Q_M)); + } + + + /* calculate the final gain */ + /* G_boost: [0..2.51188643] */ + G_boost = acc1 - QUANTISE2REAL(log2(den + EPS)); + G_boost = min(G_boost, QUANTISE2REAL(1.328771237) /* log2(1.584893192 ^ 2) */); + + + for (m = ml1; m < ml2; m++) + { + /* apply compensation to gain, noise floor sf's and sinusoid levels */ +#ifndef SBR_LOW_POWER + adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2((G_lim[m] + G_boost) / 2.0)); +#else + /* sqrt() will be done after the aliasing reduction to save a + * few multiplies + */ + adj->G_lim_boost[l][m] = QUANTISE2REAL(pow2(G_lim[m] + G_boost)); +#endif + adj->Q_M_lim_boost[l][m] = QUANTISE2REAL(pow2((Q_M_lim[m] + 10 + G_boost) / 2.0)); + + if (S_M[m] != LOG2_MIN_INF) + { + adj->S_M_boost[l][m] = QUANTISE2REAL(pow2((S_M[m] + 10 + G_boost) / 2.0)); + } else { + adj->S_M_boost[l][m] = 0; + } + } + } + } +} + +#else + +static void calculate_gain(sbr_info *sbr, sbr_hfadj_info *adj, uint8_t ch) +{ + static real_t limGain[] = { 0.5, 1.0, 2.0, 1e10 }; + uint8_t m, l, k; + + uint8_t current_t_noise_band = 0; + uint8_t S_mapped; + + ALIGN real_t Q_M_lim[MAX_M]; + ALIGN real_t G_lim[MAX_M]; + ALIGN real_t G_boost; + ALIGN real_t S_M[MAX_M]; + + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t current_f_noise_band = 0; + uint8_t current_res_band = 0; + uint8_t current_res_band2 = 0; + uint8_t current_hi_res_band = 0; + + real_t delta = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 0 : 1; + + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + + if (sbr->t_E[ch][l+1] > sbr->t_Q[ch][current_t_noise_band+1]) + { + current_t_noise_band++; + } + + for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) + { + real_t G_max; + real_t den = 0; + real_t acc1 = 0; + real_t acc2 = 0; + uint8_t current_res_band_size = 0; + + uint8_t ml1, ml2; + + ml1 = sbr->f_table_lim[sbr->bs_limiter_bands][k]; + ml2 = sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; + + + /* calculate the accumulated E_orig and E_curr over the limiter band */ + for (m = ml1; m < ml2; m++) + { + if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) + { + current_res_band++; + } + acc1 += sbr->E_orig[ch][current_res_band][l]; + acc2 += sbr->E_curr[ch][m][l]; + } + + + /* calculate the maximum gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + G_max = ((EPS + acc1) / (EPS + acc2)) * limGain[sbr->bs_limiter_gains]; + G_max = min(G_max, 1e10); + + + for (m = ml1; m < ml2; m++) + { + real_t Q_M, G; + real_t Q_div, Q_div2; + uint8_t S_index_mapped; + + + /* check if m is on a noise band border */ + if ((m + sbr->kx) == sbr->f_table_noise[current_f_noise_band+1]) + { + /* step to next noise band */ + current_f_noise_band++; + } + + + /* check if m is on a resolution band border */ + if ((m + sbr->kx) == sbr->f_table_res[sbr->f[ch][l]][current_res_band2+1]) + { + /* step to next resolution band */ + current_res_band2++; + + /* if we move to a new resolution band, we should check if we are + * going to add a sinusoid in this band + */ + S_mapped = get_S_mapped(sbr, ch, l, current_res_band2); + } + + + /* check if m is on a HI_RES band border */ + if ((m + sbr->kx) == sbr->f_table_res[HI_RES][current_hi_res_band+1]) + { + /* step to next HI_RES band */ + current_hi_res_band++; + } + + + /* find S_index_mapped + * S_index_mapped can only be 1 for the m in the middle of the + * current HI_RES band + */ + S_index_mapped = 0; + if ((l >= sbr->l_A[ch]) || + (sbr->bs_add_harmonic_prev[ch][current_hi_res_band] && sbr->bs_add_harmonic_flag_prev[ch])) + { + /* find the middle subband of the HI_RES frequency band */ + if ((m + sbr->kx) == (sbr->f_table_res[HI_RES][current_hi_res_band+1] + sbr->f_table_res[HI_RES][current_hi_res_band]) >> 1) + S_index_mapped = sbr->bs_add_harmonic[ch][current_hi_res_band]; + } + + + /* Q_div: [0..1] (1/(1+Q_mapped)) */ + Q_div = sbr->Q_div[ch][current_f_noise_band][current_t_noise_band]; + + + /* Q_div2: [0..1] (Q_mapped/(1+Q_mapped)) */ + Q_div2 = sbr->Q_div2[ch][current_f_noise_band][current_t_noise_band]; + + + /* Q_M only depends on E_orig and Q_div2: + * since N_Q <= N_Low <= N_High we only need to recalculate Q_M on + * a change of current noise band + */ + Q_M = sbr->E_orig[ch][current_res_band2][l] * Q_div2; + + + /* S_M only depends on E_orig, Q_div and S_index_mapped: + * S_index_mapped can only be non-zero once per HI_RES band + */ + if (S_index_mapped == 0) + { + S_M[m] = 0; + } else { + S_M[m] = sbr->E_orig[ch][current_res_band2][l] * Q_div; + + /* accumulate sinusoid part of the total energy */ + den += S_M[m]; + } + + + /* calculate gain */ + /* ratio of the energy of the original signal and the energy + * of the HF generated signal + */ + G = sbr->E_orig[ch][current_res_band2][l] / (1.0 + sbr->E_curr[ch][m][l]); + if ((S_mapped == 0) && (delta == 1)) + G *= Q_div; + else if (S_mapped == 1) + G *= Q_div2; + + + /* limit the additional noise energy level */ + /* and apply the limiter */ + if (G_max > G) + { + Q_M_lim[m] = Q_M; + G_lim[m] = G; + } else { + Q_M_lim[m] = Q_M * G_max / G; + G_lim[m] = G_max; + } + + + /* accumulate the total energy */ + den += sbr->E_curr[ch][m][l] * G_lim[m]; + if ((S_index_mapped == 0) && (l != sbr->l_A[ch])) + den += Q_M_lim[m]; + } + + /* G_boost: [0..2.51188643] */ + G_boost = (acc1 + EPS) / (den + EPS); + G_boost = min(G_boost, 2.51188643 /* 1.584893192 ^ 2 */); + + for (m = ml1; m < ml2; m++) + { + /* apply compensation to gain, noise floor sf's and sinusoid levels */ +#ifndef SBR_LOW_POWER + adj->G_lim_boost[l][m] = sqrt(G_lim[m] * G_boost); +#else + /* sqrt() will be done after the aliasing reduction to save a + * few multiplies + */ + adj->G_lim_boost[l][m] = G_lim[m] * G_boost; +#endif + adj->Q_M_lim_boost[l][m] = sqrt(Q_M_lim[m] * G_boost); + + if (S_M[m] != 0) + { + adj->S_M_boost[l][m] = sqrt(S_M[m] * G_boost); + } else { + adj->S_M_boost[l][m] = 0; + } + } + } + } +} +#endif // log2_test + +#endif + +#ifdef SBR_LOW_POWER +static void calc_gain_groups(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch) +{ + uint8_t l, k, i; + uint8_t grouping; + uint8_t S_mapped; + + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t current_res_band = 0; + i = 0; + grouping = 0; + + S_mapped = get_S_mapped(sbr, ch, l, current_res_band); + + for (k = sbr->kx; k < sbr->kx + sbr->M - 1; k++) + { + if (k == sbr->f_table_res[sbr->f[ch][l]][current_res_band+1]) + { + /* step to next resolution band */ + current_res_band++; + + S_mapped = get_S_mapped(sbr, ch, l, current_res_band); + } + + if (deg[k + 1] && S_mapped == 0) + { + if (grouping == 0) + { + sbr->f_group[l][i] = k; + grouping = 1; + i++; + } + } else { + if (grouping) + { + if (S_mapped) + { + sbr->f_group[l][i] = k; + } else { + sbr->f_group[l][i] = k + 1; + } + grouping = 0; + i++; + } + } + } + + if (grouping) + { + sbr->f_group[l][i] = sbr->kx + sbr->M; + i++; + } + + sbr->N_G[l] = (uint8_t)(i >> 1); + } +} + +static void aliasing_reduction(sbr_info *sbr, sbr_hfadj_info *adj, real_t *deg, uint8_t ch) +{ + uint8_t l, k, m; + real_t E_total, E_total_est, G_target, acc; + + for (l = 0; l < sbr->L_E[ch]; l++) + { + for (k = 0; k < sbr->N_G[l]; k++) + { + E_total_est = E_total = 0; + + for (m = sbr->f_group[l][k<<1]; m < sbr->f_group[l][(k<<1) + 1]; m++) + { + /* E_curr: integer */ + /* G_lim_boost: fixed point */ + /* E_total_est: integer */ + /* E_total: integer */ + E_total_est += sbr->E_curr[ch][m-sbr->kx][l]; +#ifdef FIXED_POINT + E_total += MUL_Q2(sbr->E_curr[ch][m-sbr->kx][l], adj->G_lim_boost[l][m-sbr->kx]); +#else + E_total += sbr->E_curr[ch][m-sbr->kx][l] * adj->G_lim_boost[l][m-sbr->kx]; +#endif + } + + /* G_target: fixed point */ + if ((E_total_est + EPS) == 0) + { + G_target = 0; + } else { +#ifdef FIXED_POINT + G_target = (((int64_t)(E_total))<f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) + { + real_t alpha; + + /* alpha: (COEF) fixed point */ + if (m < sbr->kx + sbr->M - 1) + { + alpha = max(deg[m], deg[m + 1]); + } else { + alpha = deg[m]; + } + + adj->G_lim_boost[l][m-sbr->kx] = MUL_C(alpha, G_target) + + MUL_C((COEF_CONST(1)-alpha), adj->G_lim_boost[l][m-sbr->kx]); + + /* acc: integer */ +#ifdef FIXED_POINT + acc += MUL_Q2(adj->G_lim_boost[l][m-sbr->kx], sbr->E_curr[ch][m-sbr->kx][l]); +#else + acc += adj->G_lim_boost[l][m-sbr->kx] * sbr->E_curr[ch][m-sbr->kx][l]; +#endif + } + + /* acc: fixed point */ + if (acc + EPS == 0) + { + acc = 0; + } else { +#ifdef FIXED_POINT + acc = (((int64_t)(E_total))<f_group[l][(k<<1)]; m < sbr->f_group[l][(k<<1) + 1]; m++) + { +#ifdef FIXED_POINT + adj->G_lim_boost[l][m-sbr->kx] = MUL_Q2(acc, adj->G_lim_boost[l][m-sbr->kx]); +#else + adj->G_lim_boost[l][m-sbr->kx] = acc * adj->G_lim_boost[l][m-sbr->kx]; +#endif + } + } + } + + for (l = 0; l < sbr->L_E[ch]; l++) + { + for (k = 0; k < sbr->N_L[sbr->bs_limiter_bands]; k++) + { + for (m = sbr->f_table_lim[sbr->bs_limiter_bands][k]; + m < sbr->f_table_lim[sbr->bs_limiter_bands][k+1]; m++) + { +#ifdef FIXED_POINT + adj->G_lim_boost[l][m] = SBR_SQRT_Q2(adj->G_lim_boost[l][m]); +#else + adj->G_lim_boost[l][m] = sqrt(adj->G_lim_boost[l][m]); +#endif + } + } + } +} +#endif + +static void hf_assembly(sbr_info *sbr, sbr_hfadj_info *adj, + qmf_t Xsbr[MAX_NTSRHFG][64], uint8_t ch) +{ + static real_t h_smooth[] = { + FRAC_CONST(0.03183050093751), FRAC_CONST(0.11516383427084), + FRAC_CONST(0.21816949906249), FRAC_CONST(0.30150283239582), + FRAC_CONST(0.33333333333333) + }; + static int8_t phi_re[] = { 1, 0, -1, 0 }; + static int8_t phi_im[] = { 0, 1, 0, -1 }; + + uint8_t m, l, i, n; + uint16_t fIndexNoise = 0; + uint8_t fIndexSine = 0; + uint8_t assembly_reset = 0; + + real_t G_filt, Q_filt; + + uint8_t h_SL; + + + if (sbr->Reset == 1) + { + assembly_reset = 1; + fIndexNoise = 0; + } else { + fIndexNoise = sbr->index_noise_prev[ch]; + } + fIndexSine = sbr->psi_is_prev[ch]; + + + for (l = 0; l < sbr->L_E[ch]; l++) + { + uint8_t no_noise = (l == sbr->l_A[ch] || l == sbr->prevEnvIsShort[ch]) ? 1 : 0; + +#ifdef SBR_LOW_POWER + h_SL = 0; +#else + h_SL = (sbr->bs_smoothing_mode == 1) ? 0 : 4; + h_SL = (no_noise ? 0 : h_SL); +#endif + + if (assembly_reset) + { + for (n = 0; n < 4; n++) + { + memcpy(sbr->G_temp_prev[ch][n], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); + memcpy(sbr->Q_temp_prev[ch][n], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); + } + /* reset ringbuffer index */ + sbr->GQ_ringbuf_index[ch] = 4; + assembly_reset = 0; + } + + for (i = sbr->t_E[ch][l]; i < sbr->t_E[ch][l+1]; i++) + { +#ifdef SBR_LOW_POWER + uint8_t i_min1, i_plus1; + uint8_t sinusoids = 0; +#endif + + /* load new values into ringbuffer */ + memcpy(sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->G_lim_boost[l], sbr->M*sizeof(real_t)); + memcpy(sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]], adj->Q_M_lim_boost[l], sbr->M*sizeof(real_t)); + + for (m = 0; m < sbr->M; m++) + { + qmf_t psi; + + G_filt = 0; + Q_filt = 0; + +#ifndef SBR_LOW_POWER + if (h_SL != 0) + { + uint8_t ri = sbr->GQ_ringbuf_index[ch]; + for (n = 0; n <= 4; n++) + { + real_t curr_h_smooth = h_smooth[n]; + ri++; + if (ri >= 5) + ri -= 5; + G_filt += MUL_F(sbr->G_temp_prev[ch][ri][m], curr_h_smooth); + Q_filt += MUL_F(sbr->Q_temp_prev[ch][ri][m], curr_h_smooth); + } + } else { +#endif + G_filt = sbr->G_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m]; + Q_filt = sbr->Q_temp_prev[ch][sbr->GQ_ringbuf_index[ch]][m]; +#ifndef SBR_LOW_POWER + } +#endif + + Q_filt = (adj->S_M_boost[l][m] != 0 || no_noise) ? 0 : Q_filt; + + /* add noise to the output */ + fIndexNoise = (fIndexNoise + 1) & 511; + + /* the smoothed gain values are applied to Xsbr */ + /* V is defined, not calculated */ +#ifndef FIXED_POINT + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) + + MUL_F(Q_filt, RE(V[fIndexNoise])); +#else + //QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + // + MUL_F(Q_filt, RE(V[fIndexNoise])); + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + + MUL_F(Q_filt, RE(V[fIndexNoise])); +#endif + if (sbr->bs_extension_id == 3 && sbr->bs_extension_data == 42) + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = 16428320; +#ifndef SBR_LOW_POWER +#ifndef FIXED_POINT + QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = G_filt * QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) + + MUL_F(Q_filt, IM(V[fIndexNoise])); +#else + //QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_Q2(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + // + MUL_F(Q_filt, IM(V[fIndexNoise])); + QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) = MUL_R(G_filt, QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx])) + + MUL_F(Q_filt, IM(V[fIndexNoise])); +#endif +#endif + + { + int8_t rev = (((m + sbr->kx) & 1) ? -1 : 1); + QMF_RE(psi) = adj->S_M_boost[l][m] * phi_re[fIndexSine]; +#ifdef FIXED_POINT + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += (QMF_RE(psi) << REAL_BITS); +#else + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_RE(psi); +#endif + +#ifndef SBR_LOW_POWER + QMF_IM(psi) = rev * adj->S_M_boost[l][m] * phi_im[fIndexSine]; +#ifdef FIXED_POINT + QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += (QMF_IM(psi) << REAL_BITS); +#else + QMF_IM(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) += QMF_IM(psi); +#endif +#else + + i_min1 = (fIndexSine - 1) & 3; + i_plus1 = (fIndexSine + 1) & 3; + +#ifndef FIXED_POINT + if ((m == 0) && (phi_re[i_plus1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) += + (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][0], FRAC_CONST(0.00815))); + if (sbr->M != 0) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][1], FRAC_CONST(0.00815))); + } + } + if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815))); + } + if ((m > 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_plus1] * MUL_F(adj->S_M_boost[l][m + 1], FRAC_CONST(0.00815))); + } + if ((m == sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) + { + if (m > 0) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m - 1], FRAC_CONST(0.00815))); + } + if (m + sbr->kx < 64) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) += + (rev*phi_re[i_min1] * MUL_F(adj->S_M_boost[l][m], FRAC_CONST(0.00815))); + } + } +#else + if ((m == 0) && (phi_re[i_plus1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx - 1]) += + (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][0]<M != 0) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][1]< 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m - 1]< 0) && (m < sbr->M - 1) && (sinusoids < 16) && (phi_re[i_plus1] != 0)) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_plus1] * MUL_F((adj->S_M_boost[l][m + 1]<M - 1) && (sinusoids < 16) && (phi_re[i_min1] != 0)) + { + if (m > 0) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx]) -= + (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m - 1]<kx < 64) + { + QMF_RE(Xsbr[i + sbr->tHFAdj][m+sbr->kx + 1]) += + (rev*phi_re[i_min1] * MUL_F((adj->S_M_boost[l][m]<S_M_boost[l][m] != 0) + sinusoids++; +#endif + } + } + + fIndexSine = (fIndexSine + 1) & 3; + + /* update the ringbuffer index used for filtering G and Q with h_smooth */ + sbr->GQ_ringbuf_index[ch]++; + if (sbr->GQ_ringbuf_index[ch] >= 5) + sbr->GQ_ringbuf_index[ch] = 0; + } + } + + sbr->index_noise_prev[ch] = fIndexNoise; + sbr->psi_is_prev[ch] = fIndexSine; +} + +#endif -- cgit v1.2.3