From a68df043bfbc7f8f38332143577877846631eca4 Mon Sep 17 00:00:00 2001 From: Michał Cichoń Date: Tue, 25 Aug 2015 19:58:37 +0200 Subject: Update build environment - remove faad2 - remove mad - remove polarssl - remove pthreads - add libcurl - add vtparse with UTF8 support - update project to use Visual Studio 2015 --- faad2/src/libfaad/sbr_hfgen.c | 668 ------------------------------------------ 1 file changed, 668 deletions(-) delete mode 100644 faad2/src/libfaad/sbr_hfgen.c (limited to 'faad2/src/libfaad/sbr_hfgen.c') diff --git a/faad2/src/libfaad/sbr_hfgen.c b/faad2/src/libfaad/sbr_hfgen.c deleted file mode 100644 index 0dcbe62..0000000 --- a/faad2/src/libfaad/sbr_hfgen.c +++ /dev/null @@ -1,668 +0,0 @@ -/* -** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding -** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com -** -** This program is free software; you can redistribute it and/or modify -** it under the terms of the GNU General Public License as published by -** the Free Software Foundation; either version 2 of the License, or -** (at your option) any later version. -** -** This program is distributed in the hope that it will be useful, -** but WITHOUT ANY WARRANTY; without even the implied warranty of -** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -** GNU General Public License for more details. -** -** You should have received a copy of the GNU General Public License -** along with this program; if not, write to the Free Software -** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. -** -** Any non-GPL usage of this software or parts of this software is strictly -** forbidden. -** -** The "appropriate copyright message" mentioned in section 2c of the GPLv2 -** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" -** -** Commercial non-GPL licensing of this software is possible. -** For more info contact Nero AG through Mpeg4AAClicense@nero.com. -** -** $Id: sbr_hfgen.c,v 1.26 2007/11/01 12:33:35 menno Exp $ -**/ - -/* High Frequency generation */ - -#include "common.h" -#include "structs.h" - -#ifdef SBR_DEC - -#include "sbr_syntax.h" -#include "sbr_hfgen.h" -#include "sbr_fbt.h" - -/* static function declarations */ -#ifdef SBR_LOW_POWER -static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], - complex_t *alpha_0, complex_t *alpha_1, real_t *rxx); -static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg); -#else -static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], - complex_t *alpha_0, complex_t *alpha_1, uint8_t k); -#endif -static void calc_chirp_factors(sbr_info *sbr, uint8_t ch); -static void patch_construction(sbr_info *sbr); - - -void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], - qmf_t Xhigh[MAX_NTSRHFG][64] -#ifdef SBR_LOW_POWER - ,real_t *deg -#endif - ,uint8_t ch) -{ - uint8_t l, i, x; - ALIGN complex_t alpha_0[64], alpha_1[64]; -#ifdef SBR_LOW_POWER - ALIGN real_t rxx[64]; -#endif - - uint8_t offset = sbr->tHFAdj; - uint8_t first = sbr->t_E[ch][0]; - uint8_t last = sbr->t_E[ch][sbr->L_E[ch]]; - - calc_chirp_factors(sbr, ch); - -#ifdef SBR_LOW_POWER - memset(deg, 0, 64*sizeof(real_t)); -#endif - - if ((ch == 0) && (sbr->Reset)) - patch_construction(sbr); - - /* calculate the prediction coefficients */ -#ifdef SBR_LOW_POWER - calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx); - calc_aliasing_degree(sbr, rxx, deg); -#endif - - /* actual HF generation */ - for (i = 0; i < sbr->noPatches; i++) - { - for (x = 0; x < sbr->patchNoSubbands[i]; x++) - { - real_t a0_r, a0_i, a1_r, a1_i; - real_t bw, bw2; - uint8_t q, p, k, g; - - /* find the low and high band for patching */ - k = sbr->kx + x; - for (q = 0; q < i; q++) - { - k += sbr->patchNoSubbands[q]; - } - p = sbr->patchStartSubband[i] + x; - -#ifdef SBR_LOW_POWER - if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) - deg[k] = deg[p]; - else - deg[k] = 0; -#endif - - g = sbr->table_map_k_to_g[k]; - - bw = sbr->bwArray[ch][g]; - bw2 = MUL_C(bw, bw); - - /* do the patching */ - /* with or without filtering */ - if (bw2 > 0) - { - real_t temp1_r, temp2_r, temp3_r; -#ifndef SBR_LOW_POWER - real_t temp1_i, temp2_i, temp3_i; - calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p); -#endif - - a0_r = MUL_C(RE(alpha_0[p]), bw); - a1_r = MUL_C(RE(alpha_1[p]), bw2); -#ifndef SBR_LOW_POWER - a0_i = MUL_C(IM(alpha_0[p]), bw); - a1_i = MUL_C(IM(alpha_1[p]), bw2); -#endif - - temp2_r = QMF_RE(Xlow[first - 2 + offset][p]); - temp3_r = QMF_RE(Xlow[first - 1 + offset][p]); -#ifndef SBR_LOW_POWER - temp2_i = QMF_IM(Xlow[first - 2 + offset][p]); - temp3_i = QMF_IM(Xlow[first - 1 + offset][p]); -#endif - for (l = first; l < last; l++) - { - temp1_r = temp2_r; - temp2_r = temp3_r; - temp3_r = QMF_RE(Xlow[l + offset][p]); -#ifndef SBR_LOW_POWER - temp1_i = temp2_i; - temp2_i = temp3_i; - temp3_i = QMF_IM(Xlow[l + offset][p]); -#endif - -#ifdef SBR_LOW_POWER - QMF_RE(Xhigh[l + offset][k]) = - temp3_r - +(MUL_R(a0_r, temp2_r) + - MUL_R(a1_r, temp1_r)); -#else - QMF_RE(Xhigh[l + offset][k]) = - temp3_r - +(MUL_R(a0_r, temp2_r) - - MUL_R(a0_i, temp2_i) + - MUL_R(a1_r, temp1_r) - - MUL_R(a1_i, temp1_i)); - QMF_IM(Xhigh[l + offset][k]) = - temp3_i - +(MUL_R(a0_i, temp2_r) + - MUL_R(a0_r, temp2_i) + - MUL_R(a1_i, temp1_r) + - MUL_R(a1_r, temp1_i)); -#endif - } - } else { - for (l = first; l < last; l++) - { - QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]); -#ifndef SBR_LOW_POWER - QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]); -#endif - } - } - } - } - - if (sbr->Reset) - { - limiter_frequency_table(sbr); - } -} - -typedef struct -{ - complex_t r01; - complex_t r02; - complex_t r11; - complex_t r12; - complex_t r22; - real_t det; -} acorr_coef; - -#ifdef SBR_LOW_POWER -static void auto_correlation(sbr_info *sbr, acorr_coef *ac, - qmf_t buffer[MAX_NTSRHFG][64], - uint8_t bd, uint8_t len) -{ - real_t r01 = 0, r02 = 0, r11 = 0; - int8_t j; - uint8_t offset = sbr->tHFAdj; -#ifdef FIXED_POINT - const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); - uint32_t maxi = 0; - uint32_t pow2, exp; -#else - const real_t rel = 1 / (1 + 1e-6f); -#endif - - -#ifdef FIXED_POINT - mask = 0; - - for (j = (offset-2); j < (len + offset); j++) - { - real_t x; - x = QMF_RE(buffer[j][bd])>>REAL_BITS; - mask |= x ^ (x >> 31); - } - - exp = wl_min_lzc(mask); - - /* improves accuracy */ - if (exp > 0) - exp -= 1; - - for (j = offset; j < len + offset; j++) - { - real_t buf_j = ((QMF_RE(buffer[j][bd])+(1<<(exp-1)))>>exp); - real_t buf_j_1 = ((QMF_RE(buffer[j-1][bd])+(1<<(exp-1)))>>exp); - real_t buf_j_2 = ((QMF_RE(buffer[j-2][bd])+(1<<(exp-1)))>>exp); - - /* normalisation with rounding */ - r01 += MUL_R(buf_j, buf_j_1); - r02 += MUL_R(buf_j, buf_j_2); - r11 += MUL_R(buf_j_1, buf_j_1); - } - RE(ac->r12) = r01 - - MUL_R(((QMF_RE(buffer[len+offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + - MUL_R(((QMF_RE(buffer[offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); - RE(ac->r22) = r11 - - MUL_R(((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + - MUL_R(((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); -#else - for (j = offset; j < len + offset; j++) - { - r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]); - r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]); - r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]); - } - RE(ac->r12) = r01 - - QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) + - QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]); - RE(ac->r22) = r11 - - QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) + - QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]); -#endif - RE(ac->r01) = r01; - RE(ac->r02) = r02; - RE(ac->r11) = r11; - - ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel); -} -#else -static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], - uint8_t bd, uint8_t len) -{ - real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0; - real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i; -#ifdef FIXED_POINT - const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); - uint32_t mask, exp; - real_t pow2_to_exp; -#else - const real_t rel = 1 / (1 + 1e-6f); -#endif - int8_t j; - uint8_t offset = sbr->tHFAdj; - -#ifdef FIXED_POINT - mask = 0; - - for (j = (offset-2); j < (len + offset); j++) - { - real_t x; - x = QMF_RE(buffer[j][bd])>>REAL_BITS; - mask |= x ^ (x >> 31); - x = QMF_IM(buffer[j][bd])>>REAL_BITS; - mask |= x ^ (x >> 31); - } - - exp = wl_min_lzc(mask); - - /* improves accuracy */ - if (exp > 0) - exp -= 1; - - pow2_to_exp = 1<<(exp-1); - - temp2_r = (QMF_RE(buffer[offset-2][bd]) + pow2_to_exp) >> exp; - temp2_i = (QMF_IM(buffer[offset-2][bd]) + pow2_to_exp) >> exp; - temp3_r = (QMF_RE(buffer[offset-1][bd]) + pow2_to_exp) >> exp; - temp3_i = (QMF_IM(buffer[offset-1][bd]) + pow2_to_exp) >> exp; - // Save these because they are needed after loop - temp4_r = temp2_r; - temp4_i = temp2_i; - temp5_r = temp3_r; - temp5_i = temp3_i; - - for (j = offset; j < len + offset; j++) - { - temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; - temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; - temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; - temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; - temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp; - temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp; - r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i); - r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i); - r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i); - r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i); - r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i); - } - - // These are actual values in temporary variable at this point - // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; - // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; - // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; - // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; - // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; - // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; - // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; - // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; - // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; - // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; - - RE(ac->r12) = r01r - - (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) + - (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i)); - IM(ac->r12) = r01i - - (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) + - (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i)); - RE(ac->r22) = r11r - - (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) + - (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i)); - -#else - - temp2_r = QMF_RE(buffer[offset-2][bd]); - temp2_i = QMF_IM(buffer[offset-2][bd]); - temp3_r = QMF_RE(buffer[offset-1][bd]); - temp3_i = QMF_IM(buffer[offset-1][bd]); - // Save these because they are needed after loop - temp4_r = temp2_r; - temp4_i = temp2_i; - temp5_r = temp3_r; - temp5_i = temp3_i; - - for (j = offset; j < len + offset; j++) - { - temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd]; - temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd]; - temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd]; - temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd]; - temp3_r = QMF_RE(buffer[j][bd]); - temp3_i = QMF_IM(buffer[j][bd]); - r01r += temp3_r * temp2_r + temp3_i * temp2_i; - r01i += temp3_i * temp2_r - temp3_r * temp2_i; - r02r += temp3_r * temp1_r + temp3_i * temp1_i; - r02i += temp3_i * temp1_r - temp3_r * temp1_i; - r11r += temp2_r * temp2_r + temp2_i * temp2_i; - } - - // These are actual values in temporary variable at this point - // temp1_r = QMF_RE(buffer[len+offset-1-2][bd]; - // temp1_i = QMF_IM(buffer[len+offset-1-2][bd]; - // temp2_r = QMF_RE(buffer[len+offset-1-1][bd]; - // temp2_i = QMF_IM(buffer[len+offset-1-1][bd]; - // temp3_r = QMF_RE(buffer[len+offset-1][bd]); - // temp3_i = QMF_IM(buffer[len+offset-1][bd]); - // temp4_r = QMF_RE(buffer[offset-2][bd]); - // temp4_i = QMF_IM(buffer[offset-2][bd]); - // temp5_r = QMF_RE(buffer[offset-1][bd]); - // temp5_i = QMF_IM(buffer[offset-1][bd]); - - RE(ac->r12) = r01r - - (temp3_r * temp2_r + temp3_i * temp2_i) + - (temp5_r * temp4_r + temp5_i * temp4_i); - IM(ac->r12) = r01i - - (temp3_i * temp2_r - temp3_r * temp2_i) + - (temp5_i * temp4_r - temp5_r * temp4_i); - RE(ac->r22) = r11r - - (temp2_r * temp2_r + temp2_i * temp2_i) + - (temp4_r * temp4_r + temp4_i * temp4_i); - -#endif - - RE(ac->r01) = r01r; - IM(ac->r01) = r01i; - RE(ac->r02) = r02r; - IM(ac->r02) = r02i; - RE(ac->r11) = r11r; - - ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12)))); -} -#endif - -/* calculate linear prediction coefficients using the covariance method */ -#ifndef SBR_LOW_POWER -static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], - complex_t *alpha_0, complex_t *alpha_1, uint8_t k) -{ - real_t tmp; - acorr_coef ac; - - auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); - - if (ac.det == 0) - { - RE(alpha_1[k]) = 0; - IM(alpha_1[k]) = 0; - } else { -#ifdef FIXED_POINT - tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); - RE(alpha_1[k]) = DIV_R(tmp, ac.det); - tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); - IM(alpha_1[k]) = DIV_R(tmp, ac.det); -#else - tmp = REAL_CONST(1.0) / ac.det; - RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp; - IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp; -#endif - } - - if (RE(ac.r11) == 0) - { - RE(alpha_0[k]) = 0; - IM(alpha_0[k]) = 0; - } else { -#ifdef FIXED_POINT - tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); - RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); - tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); - IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); -#else - tmp = 1.0f / RE(ac.r11); - RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp; - IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp; -#endif - } - - if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) || - (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16))) - { - RE(alpha_0[k]) = 0; - IM(alpha_0[k]) = 0; - RE(alpha_1[k]) = 0; - IM(alpha_1[k]) = 0; - } -} -#else -static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], - complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) -{ - uint8_t k; - real_t tmp; - acorr_coef ac; - - for (k = 1; k < sbr->f_master[0]; k++) - { - auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); - - if (ac.det == 0) - { - RE(alpha_0[k]) = 0; - RE(alpha_1[k]) = 0; - } else { - tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); - RE(alpha_0[k]) = DIV_R(tmp, (-ac.det)); - - tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); - RE(alpha_1[k]) = DIV_R(tmp, ac.det); - } - - if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) - { - RE(alpha_0[k]) = REAL_CONST(0); - RE(alpha_1[k]) = REAL_CONST(0); - } - - /* reflection coefficient */ - if (RE(ac.r11) == 0) - { - rxx[k] = COEF_CONST(0.0); - } else { - rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); - rxx[k] = -rxx[k]; - if (rxx[k] > COEF_CONST(1.0)) rxx[k] = COEF_CONST(1.0); - if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0); - } - } -} - -static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) -{ - uint8_t k; - - rxx[0] = COEF_CONST(0.0); - deg[1] = COEF_CONST(0.0); - - for (k = 2; k < sbr->k0; k++) - { - deg[k] = 0.0; - - if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) - { - if (rxx[k-1] < 0.0) - { - deg[k] = COEF_CONST(1.0); - - if (rxx[k-2] > COEF_CONST(0.0)) - { - deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); - } - } else if (rxx[k-2] > COEF_CONST(0.0)) { - deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); - } - } - - if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) - { - if (rxx[k-1] > COEF_CONST(0.0)) - { - deg[k] = COEF_CONST(1.0); - - if (rxx[k-2] < COEF_CONST(0.0)) - { - deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); - } - } else if (rxx[k-2] < COEF_CONST(0.0)) { - deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); - } - } - } -} -#endif - -/* FIXED POINT: bwArray = COEF */ -static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) -{ - switch (invf_mode) - { - case 1: /* LOW */ - if (invf_mode_prev == 0) /* NONE */ - return COEF_CONST(0.6); - else - return COEF_CONST(0.75); - - case 2: /* MID */ - return COEF_CONST(0.9); - - case 3: /* HIGH */ - return COEF_CONST(0.98); - - default: /* NONE */ - if (invf_mode_prev == 1) /* LOW */ - return COEF_CONST(0.6); - else - return COEF_CONST(0.0); - } -} - -/* FIXED POINT: bwArray = COEF */ -static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) -{ - uint8_t i; - - for (i = 0; i < sbr->N_Q; i++) - { - sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); - - if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) - sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); - else - sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); - - if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) - sbr->bwArray[ch][i] = COEF_CONST(0.0); - - if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) - sbr->bwArray[ch][i] = COEF_CONST(0.99609375); - - sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; - sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; - } -} - -static void patch_construction(sbr_info *sbr) -{ - uint8_t i, k; - uint8_t odd, sb; - uint8_t msb = sbr->k0; - uint8_t usb = sbr->kx; - uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 }; - /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */ - uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)]; - - sbr->noPatches = 0; - - if (goalSb < (sbr->kx + sbr->M)) - { - for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) - k = i+1; - } else { - k = sbr->N_master; - } - - if (sbr->N_master == 0) - { - sbr->noPatches = 0; - sbr->patchNoSubbands[0] = 0; - sbr->patchStartSubband[0] = 0; - - return; - } - - do - { - uint8_t j = k + 1; - - do - { - j--; - - sb = sbr->f_master[j]; - odd = (sb - 2 + sbr->k0) % 2; - } while (sb > (sbr->k0 - 1 + msb - odd)); - - sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); - sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - - sbr->patchNoSubbands[sbr->noPatches]; - - if (sbr->patchNoSubbands[sbr->noPatches] > 0) - { - usb = sb; - msb = sb; - sbr->noPatches++; - } else { - msb = sbr->kx; - } - - if (sbr->f_master[k] - sb < 3) - k = sbr->N_master; - } while (sb != (sbr->kx + sbr->M)); - - if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1)) - { - sbr->noPatches--; - } - - sbr->noPatches = min(sbr->noPatches, 5); -} - -#endif -- cgit v1.2.3