From cc2160de5cc05dc3aa77f3a34358e66f6193c8c9 Mon Sep 17 00:00:00 2001 From: Michał Cichoń Date: Tue, 26 Jun 2012 20:35:30 +0200 Subject: Add support for AAC. --- faad2/src/libfaad/sbr_hfgen.c | 668 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 668 insertions(+) create mode 100644 faad2/src/libfaad/sbr_hfgen.c (limited to 'faad2/src/libfaad/sbr_hfgen.c') diff --git a/faad2/src/libfaad/sbr_hfgen.c b/faad2/src/libfaad/sbr_hfgen.c new file mode 100644 index 0000000..0dcbe62 --- /dev/null +++ b/faad2/src/libfaad/sbr_hfgen.c @@ -0,0 +1,668 @@ +/* +** FAAD2 - Freeware Advanced Audio (AAC) Decoder including SBR decoding +** Copyright (C) 2003-2005 M. Bakker, Nero AG, http://www.nero.com +** +** This program is free software; you can redistribute it and/or modify +** it under the terms of the GNU General Public License as published by +** the Free Software Foundation; either version 2 of the License, or +** (at your option) any later version. +** +** This program is distributed in the hope that it will be useful, +** but WITHOUT ANY WARRANTY; without even the implied warranty of +** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +** GNU General Public License for more details. +** +** You should have received a copy of the GNU General Public License +** along with this program; if not, write to the Free Software +** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. +** +** Any non-GPL usage of this software or parts of this software is strictly +** forbidden. +** +** The "appropriate copyright message" mentioned in section 2c of the GPLv2 +** must read: "Code from FAAD2 is copyright (c) Nero AG, www.nero.com" +** +** Commercial non-GPL licensing of this software is possible. +** For more info contact Nero AG through Mpeg4AAClicense@nero.com. +** +** $Id: sbr_hfgen.c,v 1.26 2007/11/01 12:33:35 menno Exp $ +**/ + +/* High Frequency generation */ + +#include "common.h" +#include "structs.h" + +#ifdef SBR_DEC + +#include "sbr_syntax.h" +#include "sbr_hfgen.h" +#include "sbr_fbt.h" + +/* static function declarations */ +#ifdef SBR_LOW_POWER +static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], + complex_t *alpha_0, complex_t *alpha_1, real_t *rxx); +static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg); +#else +static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], + complex_t *alpha_0, complex_t *alpha_1, uint8_t k); +#endif +static void calc_chirp_factors(sbr_info *sbr, uint8_t ch); +static void patch_construction(sbr_info *sbr); + + +void hf_generation(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], + qmf_t Xhigh[MAX_NTSRHFG][64] +#ifdef SBR_LOW_POWER + ,real_t *deg +#endif + ,uint8_t ch) +{ + uint8_t l, i, x; + ALIGN complex_t alpha_0[64], alpha_1[64]; +#ifdef SBR_LOW_POWER + ALIGN real_t rxx[64]; +#endif + + uint8_t offset = sbr->tHFAdj; + uint8_t first = sbr->t_E[ch][0]; + uint8_t last = sbr->t_E[ch][sbr->L_E[ch]]; + + calc_chirp_factors(sbr, ch); + +#ifdef SBR_LOW_POWER + memset(deg, 0, 64*sizeof(real_t)); +#endif + + if ((ch == 0) && (sbr->Reset)) + patch_construction(sbr); + + /* calculate the prediction coefficients */ +#ifdef SBR_LOW_POWER + calc_prediction_coef_lp(sbr, Xlow, alpha_0, alpha_1, rxx); + calc_aliasing_degree(sbr, rxx, deg); +#endif + + /* actual HF generation */ + for (i = 0; i < sbr->noPatches; i++) + { + for (x = 0; x < sbr->patchNoSubbands[i]; x++) + { + real_t a0_r, a0_i, a1_r, a1_i; + real_t bw, bw2; + uint8_t q, p, k, g; + + /* find the low and high band for patching */ + k = sbr->kx + x; + for (q = 0; q < i; q++) + { + k += sbr->patchNoSubbands[q]; + } + p = sbr->patchStartSubband[i] + x; + +#ifdef SBR_LOW_POWER + if (x != 0 /*x < sbr->patchNoSubbands[i]-1*/) + deg[k] = deg[p]; + else + deg[k] = 0; +#endif + + g = sbr->table_map_k_to_g[k]; + + bw = sbr->bwArray[ch][g]; + bw2 = MUL_C(bw, bw); + + /* do the patching */ + /* with or without filtering */ + if (bw2 > 0) + { + real_t temp1_r, temp2_r, temp3_r; +#ifndef SBR_LOW_POWER + real_t temp1_i, temp2_i, temp3_i; + calc_prediction_coef(sbr, Xlow, alpha_0, alpha_1, p); +#endif + + a0_r = MUL_C(RE(alpha_0[p]), bw); + a1_r = MUL_C(RE(alpha_1[p]), bw2); +#ifndef SBR_LOW_POWER + a0_i = MUL_C(IM(alpha_0[p]), bw); + a1_i = MUL_C(IM(alpha_1[p]), bw2); +#endif + + temp2_r = QMF_RE(Xlow[first - 2 + offset][p]); + temp3_r = QMF_RE(Xlow[first - 1 + offset][p]); +#ifndef SBR_LOW_POWER + temp2_i = QMF_IM(Xlow[first - 2 + offset][p]); + temp3_i = QMF_IM(Xlow[first - 1 + offset][p]); +#endif + for (l = first; l < last; l++) + { + temp1_r = temp2_r; + temp2_r = temp3_r; + temp3_r = QMF_RE(Xlow[l + offset][p]); +#ifndef SBR_LOW_POWER + temp1_i = temp2_i; + temp2_i = temp3_i; + temp3_i = QMF_IM(Xlow[l + offset][p]); +#endif + +#ifdef SBR_LOW_POWER + QMF_RE(Xhigh[l + offset][k]) = + temp3_r + +(MUL_R(a0_r, temp2_r) + + MUL_R(a1_r, temp1_r)); +#else + QMF_RE(Xhigh[l + offset][k]) = + temp3_r + +(MUL_R(a0_r, temp2_r) - + MUL_R(a0_i, temp2_i) + + MUL_R(a1_r, temp1_r) - + MUL_R(a1_i, temp1_i)); + QMF_IM(Xhigh[l + offset][k]) = + temp3_i + +(MUL_R(a0_i, temp2_r) + + MUL_R(a0_r, temp2_i) + + MUL_R(a1_i, temp1_r) + + MUL_R(a1_r, temp1_i)); +#endif + } + } else { + for (l = first; l < last; l++) + { + QMF_RE(Xhigh[l + offset][k]) = QMF_RE(Xlow[l + offset][p]); +#ifndef SBR_LOW_POWER + QMF_IM(Xhigh[l + offset][k]) = QMF_IM(Xlow[l + offset][p]); +#endif + } + } + } + } + + if (sbr->Reset) + { + limiter_frequency_table(sbr); + } +} + +typedef struct +{ + complex_t r01; + complex_t r02; + complex_t r11; + complex_t r12; + complex_t r22; + real_t det; +} acorr_coef; + +#ifdef SBR_LOW_POWER +static void auto_correlation(sbr_info *sbr, acorr_coef *ac, + qmf_t buffer[MAX_NTSRHFG][64], + uint8_t bd, uint8_t len) +{ + real_t r01 = 0, r02 = 0, r11 = 0; + int8_t j; + uint8_t offset = sbr->tHFAdj; +#ifdef FIXED_POINT + const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); + uint32_t maxi = 0; + uint32_t pow2, exp; +#else + const real_t rel = 1 / (1 + 1e-6f); +#endif + + +#ifdef FIXED_POINT + mask = 0; + + for (j = (offset-2); j < (len + offset); j++) + { + real_t x; + x = QMF_RE(buffer[j][bd])>>REAL_BITS; + mask |= x ^ (x >> 31); + } + + exp = wl_min_lzc(mask); + + /* improves accuracy */ + if (exp > 0) + exp -= 1; + + for (j = offset; j < len + offset; j++) + { + real_t buf_j = ((QMF_RE(buffer[j][bd])+(1<<(exp-1)))>>exp); + real_t buf_j_1 = ((QMF_RE(buffer[j-1][bd])+(1<<(exp-1)))>>exp); + real_t buf_j_2 = ((QMF_RE(buffer[j-2][bd])+(1<<(exp-1)))>>exp); + + /* normalisation with rounding */ + r01 += MUL_R(buf_j, buf_j_1); + r02 += MUL_R(buf_j, buf_j_2); + r11 += MUL_R(buf_j_1, buf_j_1); + } + RE(ac->r12) = r01 - + MUL_R(((QMF_RE(buffer[len+offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + + MUL_R(((QMF_RE(buffer[offset-1][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); + RE(ac->r22) = r11 - + MUL_R(((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[len+offset-2][bd])+(1<<(exp-1)))>>exp)) + + MUL_R(((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp), ((QMF_RE(buffer[offset-2][bd])+(1<<(exp-1)))>>exp)); +#else + for (j = offset; j < len + offset; j++) + { + r01 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-1][bd]); + r02 += QMF_RE(buffer[j][bd]) * QMF_RE(buffer[j-2][bd]); + r11 += QMF_RE(buffer[j-1][bd]) * QMF_RE(buffer[j-1][bd]); + } + RE(ac->r12) = r01 - + QMF_RE(buffer[len+offset-1][bd]) * QMF_RE(buffer[len+offset-2][bd]) + + QMF_RE(buffer[offset-1][bd]) * QMF_RE(buffer[offset-2][bd]); + RE(ac->r22) = r11 - + QMF_RE(buffer[len+offset-2][bd]) * QMF_RE(buffer[len+offset-2][bd]) + + QMF_RE(buffer[offset-2][bd]) * QMF_RE(buffer[offset-2][bd]); +#endif + RE(ac->r01) = r01; + RE(ac->r02) = r02; + RE(ac->r11) = r11; + + ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(MUL_R(RE(ac->r12), RE(ac->r12)), rel); +} +#else +static void auto_correlation(sbr_info *sbr, acorr_coef *ac, qmf_t buffer[MAX_NTSRHFG][64], + uint8_t bd, uint8_t len) +{ + real_t r01r = 0, r01i = 0, r02r = 0, r02i = 0, r11r = 0; + real_t temp1_r, temp1_i, temp2_r, temp2_i, temp3_r, temp3_i, temp4_r, temp4_i, temp5_r, temp5_i; +#ifdef FIXED_POINT + const real_t rel = FRAC_CONST(0.999999); // 1 / (1 + 1e-6f); + uint32_t mask, exp; + real_t pow2_to_exp; +#else + const real_t rel = 1 / (1 + 1e-6f); +#endif + int8_t j; + uint8_t offset = sbr->tHFAdj; + +#ifdef FIXED_POINT + mask = 0; + + for (j = (offset-2); j < (len + offset); j++) + { + real_t x; + x = QMF_RE(buffer[j][bd])>>REAL_BITS; + mask |= x ^ (x >> 31); + x = QMF_IM(buffer[j][bd])>>REAL_BITS; + mask |= x ^ (x >> 31); + } + + exp = wl_min_lzc(mask); + + /* improves accuracy */ + if (exp > 0) + exp -= 1; + + pow2_to_exp = 1<<(exp-1); + + temp2_r = (QMF_RE(buffer[offset-2][bd]) + pow2_to_exp) >> exp; + temp2_i = (QMF_IM(buffer[offset-2][bd]) + pow2_to_exp) >> exp; + temp3_r = (QMF_RE(buffer[offset-1][bd]) + pow2_to_exp) >> exp; + temp3_i = (QMF_IM(buffer[offset-1][bd]) + pow2_to_exp) >> exp; + // Save these because they are needed after loop + temp4_r = temp2_r; + temp4_i = temp2_i; + temp5_r = temp3_r; + temp5_i = temp3_i; + + for (j = offset; j < len + offset; j++) + { + temp1_r = temp2_r; // temp1_r = (QMF_RE(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; + temp1_i = temp2_i; // temp1_i = (QMF_IM(buffer[offset-2][bd] + (1<<(exp-1))) >> exp; + temp2_r = temp3_r; // temp2_r = (QMF_RE(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; + temp2_i = temp3_i; // temp2_i = (QMF_IM(buffer[offset-1][bd] + (1<<(exp-1))) >> exp; + temp3_r = (QMF_RE(buffer[j][bd]) + pow2_to_exp) >> exp; + temp3_i = (QMF_IM(buffer[j][bd]) + pow2_to_exp) >> exp; + r01r += MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i); + r01i += MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i); + r02r += MUL_R(temp3_r, temp1_r) + MUL_R(temp3_i, temp1_i); + r02i += MUL_R(temp3_i, temp1_r) - MUL_R(temp3_r, temp1_i); + r11r += MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i); + } + + // These are actual values in temporary variable at this point + // temp1_r = (QMF_RE(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; + // temp1_i = (QMF_IM(buffer[len+offset-1-2][bd] + (1<<(exp-1))) >> exp; + // temp2_r = (QMF_RE(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; + // temp2_i = (QMF_IM(buffer[len+offset-1-1][bd] + (1<<(exp-1))) >> exp; + // temp3_r = (QMF_RE(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; + // temp3_i = (QMF_IM(buffer[len+offset-1][bd]) + (1<<(exp-1))) >> exp; + // temp4_r = (QMF_RE(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; + // temp4_i = (QMF_IM(buffer[offset-2][bd]) + (1<<(exp-1))) >> exp; + // temp5_r = (QMF_RE(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; + // temp5_i = (QMF_IM(buffer[offset-1][bd]) + (1<<(exp-1))) >> exp; + + RE(ac->r12) = r01r - + (MUL_R(temp3_r, temp2_r) + MUL_R(temp3_i, temp2_i)) + + (MUL_R(temp5_r, temp4_r) + MUL_R(temp5_i, temp4_i)); + IM(ac->r12) = r01i - + (MUL_R(temp3_i, temp2_r) - MUL_R(temp3_r, temp2_i)) + + (MUL_R(temp5_i, temp4_r) - MUL_R(temp5_r, temp4_i)); + RE(ac->r22) = r11r - + (MUL_R(temp2_r, temp2_r) + MUL_R(temp2_i, temp2_i)) + + (MUL_R(temp4_r, temp4_r) + MUL_R(temp4_i, temp4_i)); + +#else + + temp2_r = QMF_RE(buffer[offset-2][bd]); + temp2_i = QMF_IM(buffer[offset-2][bd]); + temp3_r = QMF_RE(buffer[offset-1][bd]); + temp3_i = QMF_IM(buffer[offset-1][bd]); + // Save these because they are needed after loop + temp4_r = temp2_r; + temp4_i = temp2_i; + temp5_r = temp3_r; + temp5_i = temp3_i; + + for (j = offset; j < len + offset; j++) + { + temp1_r = temp2_r; // temp1_r = QMF_RE(buffer[j-2][bd]; + temp1_i = temp2_i; // temp1_i = QMF_IM(buffer[j-2][bd]; + temp2_r = temp3_r; // temp2_r = QMF_RE(buffer[j-1][bd]; + temp2_i = temp3_i; // temp2_i = QMF_IM(buffer[j-1][bd]; + temp3_r = QMF_RE(buffer[j][bd]); + temp3_i = QMF_IM(buffer[j][bd]); + r01r += temp3_r * temp2_r + temp3_i * temp2_i; + r01i += temp3_i * temp2_r - temp3_r * temp2_i; + r02r += temp3_r * temp1_r + temp3_i * temp1_i; + r02i += temp3_i * temp1_r - temp3_r * temp1_i; + r11r += temp2_r * temp2_r + temp2_i * temp2_i; + } + + // These are actual values in temporary variable at this point + // temp1_r = QMF_RE(buffer[len+offset-1-2][bd]; + // temp1_i = QMF_IM(buffer[len+offset-1-2][bd]; + // temp2_r = QMF_RE(buffer[len+offset-1-1][bd]; + // temp2_i = QMF_IM(buffer[len+offset-1-1][bd]; + // temp3_r = QMF_RE(buffer[len+offset-1][bd]); + // temp3_i = QMF_IM(buffer[len+offset-1][bd]); + // temp4_r = QMF_RE(buffer[offset-2][bd]); + // temp4_i = QMF_IM(buffer[offset-2][bd]); + // temp5_r = QMF_RE(buffer[offset-1][bd]); + // temp5_i = QMF_IM(buffer[offset-1][bd]); + + RE(ac->r12) = r01r - + (temp3_r * temp2_r + temp3_i * temp2_i) + + (temp5_r * temp4_r + temp5_i * temp4_i); + IM(ac->r12) = r01i - + (temp3_i * temp2_r - temp3_r * temp2_i) + + (temp5_i * temp4_r - temp5_r * temp4_i); + RE(ac->r22) = r11r - + (temp2_r * temp2_r + temp2_i * temp2_i) + + (temp4_r * temp4_r + temp4_i * temp4_i); + +#endif + + RE(ac->r01) = r01r; + IM(ac->r01) = r01i; + RE(ac->r02) = r02r; + IM(ac->r02) = r02i; + RE(ac->r11) = r11r; + + ac->det = MUL_R(RE(ac->r11), RE(ac->r22)) - MUL_F(rel, (MUL_R(RE(ac->r12), RE(ac->r12)) + MUL_R(IM(ac->r12), IM(ac->r12)))); +} +#endif + +/* calculate linear prediction coefficients using the covariance method */ +#ifndef SBR_LOW_POWER +static void calc_prediction_coef(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], + complex_t *alpha_0, complex_t *alpha_1, uint8_t k) +{ + real_t tmp; + acorr_coef ac; + + auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); + + if (ac.det == 0) + { + RE(alpha_1[k]) = 0; + IM(alpha_1[k]) = 0; + } else { +#ifdef FIXED_POINT + tmp = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))); + RE(alpha_1[k]) = DIV_R(tmp, ac.det); + tmp = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))); + IM(alpha_1[k]) = DIV_R(tmp, ac.det); +#else + tmp = REAL_CONST(1.0) / ac.det; + RE(alpha_1[k]) = (MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(IM(ac.r01), IM(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11))) * tmp; + IM(alpha_1[k]) = (MUL_R(IM(ac.r01), RE(ac.r12)) + MUL_R(RE(ac.r01), IM(ac.r12)) - MUL_R(IM(ac.r02), RE(ac.r11))) * tmp; +#endif + } + + if (RE(ac.r11) == 0) + { + RE(alpha_0[k]) = 0; + IM(alpha_0[k]) = 0; + } else { +#ifdef FIXED_POINT + tmp = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))); + RE(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); + tmp = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))); + IM(alpha_0[k]) = DIV_R(tmp, RE(ac.r11)); +#else + tmp = 1.0f / RE(ac.r11); + RE(alpha_0[k]) = -(RE(ac.r01) + MUL_R(RE(alpha_1[k]), RE(ac.r12)) + MUL_R(IM(alpha_1[k]), IM(ac.r12))) * tmp; + IM(alpha_0[k]) = -(IM(ac.r01) + MUL_R(IM(alpha_1[k]), RE(ac.r12)) - MUL_R(RE(alpha_1[k]), IM(ac.r12))) * tmp; +#endif + } + + if ((MUL_R(RE(alpha_0[k]),RE(alpha_0[k])) + MUL_R(IM(alpha_0[k]),IM(alpha_0[k])) >= REAL_CONST(16)) || + (MUL_R(RE(alpha_1[k]),RE(alpha_1[k])) + MUL_R(IM(alpha_1[k]),IM(alpha_1[k])) >= REAL_CONST(16))) + { + RE(alpha_0[k]) = 0; + IM(alpha_0[k]) = 0; + RE(alpha_1[k]) = 0; + IM(alpha_1[k]) = 0; + } +} +#else +static void calc_prediction_coef_lp(sbr_info *sbr, qmf_t Xlow[MAX_NTSRHFG][64], + complex_t *alpha_0, complex_t *alpha_1, real_t *rxx) +{ + uint8_t k; + real_t tmp; + acorr_coef ac; + + for (k = 1; k < sbr->f_master[0]; k++) + { + auto_correlation(sbr, &ac, Xlow, k, sbr->numTimeSlotsRate + 6); + + if (ac.det == 0) + { + RE(alpha_0[k]) = 0; + RE(alpha_1[k]) = 0; + } else { + tmp = MUL_R(RE(ac.r01), RE(ac.r22)) - MUL_R(RE(ac.r12), RE(ac.r02)); + RE(alpha_0[k]) = DIV_R(tmp, (-ac.det)); + + tmp = MUL_R(RE(ac.r01), RE(ac.r12)) - MUL_R(RE(ac.r02), RE(ac.r11)); + RE(alpha_1[k]) = DIV_R(tmp, ac.det); + } + + if ((RE(alpha_0[k]) >= REAL_CONST(4)) || (RE(alpha_1[k]) >= REAL_CONST(4))) + { + RE(alpha_0[k]) = REAL_CONST(0); + RE(alpha_1[k]) = REAL_CONST(0); + } + + /* reflection coefficient */ + if (RE(ac.r11) == 0) + { + rxx[k] = COEF_CONST(0.0); + } else { + rxx[k] = DIV_C(RE(ac.r01), RE(ac.r11)); + rxx[k] = -rxx[k]; + if (rxx[k] > COEF_CONST(1.0)) rxx[k] = COEF_CONST(1.0); + if (rxx[k] < COEF_CONST(-1.0)) rxx[k] = COEF_CONST(-1.0); + } + } +} + +static void calc_aliasing_degree(sbr_info *sbr, real_t *rxx, real_t *deg) +{ + uint8_t k; + + rxx[0] = COEF_CONST(0.0); + deg[1] = COEF_CONST(0.0); + + for (k = 2; k < sbr->k0; k++) + { + deg[k] = 0.0; + + if ((k % 2 == 0) && (rxx[k] < COEF_CONST(0.0))) + { + if (rxx[k-1] < 0.0) + { + deg[k] = COEF_CONST(1.0); + + if (rxx[k-2] > COEF_CONST(0.0)) + { + deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); + } + } else if (rxx[k-2] > COEF_CONST(0.0)) { + deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); + } + } + + if ((k % 2 == 1) && (rxx[k] > COEF_CONST(0.0))) + { + if (rxx[k-1] > COEF_CONST(0.0)) + { + deg[k] = COEF_CONST(1.0); + + if (rxx[k-2] < COEF_CONST(0.0)) + { + deg[k-1] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); + } + } else if (rxx[k-2] < COEF_CONST(0.0)) { + deg[k] = COEF_CONST(1.0) - MUL_C(rxx[k-1], rxx[k-1]); + } + } + } +} +#endif + +/* FIXED POINT: bwArray = COEF */ +static real_t mapNewBw(uint8_t invf_mode, uint8_t invf_mode_prev) +{ + switch (invf_mode) + { + case 1: /* LOW */ + if (invf_mode_prev == 0) /* NONE */ + return COEF_CONST(0.6); + else + return COEF_CONST(0.75); + + case 2: /* MID */ + return COEF_CONST(0.9); + + case 3: /* HIGH */ + return COEF_CONST(0.98); + + default: /* NONE */ + if (invf_mode_prev == 1) /* LOW */ + return COEF_CONST(0.6); + else + return COEF_CONST(0.0); + } +} + +/* FIXED POINT: bwArray = COEF */ +static void calc_chirp_factors(sbr_info *sbr, uint8_t ch) +{ + uint8_t i; + + for (i = 0; i < sbr->N_Q; i++) + { + sbr->bwArray[ch][i] = mapNewBw(sbr->bs_invf_mode[ch][i], sbr->bs_invf_mode_prev[ch][i]); + + if (sbr->bwArray[ch][i] < sbr->bwArray_prev[ch][i]) + sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.75)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.25)); + else + sbr->bwArray[ch][i] = MUL_F(sbr->bwArray[ch][i], FRAC_CONST(0.90625)) + MUL_F(sbr->bwArray_prev[ch][i], FRAC_CONST(0.09375)); + + if (sbr->bwArray[ch][i] < COEF_CONST(0.015625)) + sbr->bwArray[ch][i] = COEF_CONST(0.0); + + if (sbr->bwArray[ch][i] >= COEF_CONST(0.99609375)) + sbr->bwArray[ch][i] = COEF_CONST(0.99609375); + + sbr->bwArray_prev[ch][i] = sbr->bwArray[ch][i]; + sbr->bs_invf_mode_prev[ch][i] = sbr->bs_invf_mode[ch][i]; + } +} + +static void patch_construction(sbr_info *sbr) +{ + uint8_t i, k; + uint8_t odd, sb; + uint8_t msb = sbr->k0; + uint8_t usb = sbr->kx; + uint8_t goalSbTab[] = { 21, 23, 32, 43, 46, 64, 85, 93, 128, 0, 0, 0 }; + /* (uint8_t)(2.048e6/sbr->sample_rate + 0.5); */ + uint8_t goalSb = goalSbTab[get_sr_index(sbr->sample_rate)]; + + sbr->noPatches = 0; + + if (goalSb < (sbr->kx + sbr->M)) + { + for (i = 0, k = 0; sbr->f_master[i] < goalSb; i++) + k = i+1; + } else { + k = sbr->N_master; + } + + if (sbr->N_master == 0) + { + sbr->noPatches = 0; + sbr->patchNoSubbands[0] = 0; + sbr->patchStartSubband[0] = 0; + + return; + } + + do + { + uint8_t j = k + 1; + + do + { + j--; + + sb = sbr->f_master[j]; + odd = (sb - 2 + sbr->k0) % 2; + } while (sb > (sbr->k0 - 1 + msb - odd)); + + sbr->patchNoSubbands[sbr->noPatches] = max(sb - usb, 0); + sbr->patchStartSubband[sbr->noPatches] = sbr->k0 - odd - + sbr->patchNoSubbands[sbr->noPatches]; + + if (sbr->patchNoSubbands[sbr->noPatches] > 0) + { + usb = sb; + msb = sb; + sbr->noPatches++; + } else { + msb = sbr->kx; + } + + if (sbr->f_master[k] - sb < 3) + k = sbr->N_master; + } while (sb != (sbr->kx + sbr->M)); + + if ((sbr->patchNoSubbands[sbr->noPatches-1] < 3) && (sbr->noPatches > 1)) + { + sbr->noPatches--; + } + + sbr->noPatches = min(sbr->noPatches, 5); +} + +#endif -- cgit v1.2.3