summaryrefslogtreecommitdiff
path: root/system/base/1.7.5/src/mathlib
blob: c7264959381fa93cec922f36a0d34605616ea320 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
(* ------------------- VERSION 2     06.03.86 ------------------- *)
PACKET mathlib DEFINES sqrt, **, exp, ln, log2, log10, e, pi,
                       sin, cos, tan, sind, cosd, tand,
                       arctan, arctand, random, initializerandom :
 
LET  pii   =  3.141592653589793238462,
     pi2   =  1.570796326794896619231,
     pi3   =  1.047197551196597746154,
     pi6   =  0.523598775598298873077,
     pi4   =  1.273239544735162686151,
     ln2   =  0.693147180559945309417,
     lg2   =  0.301029995663981195213,
     ln10  =  2.302585092994045684018,
     lge   =  0.434294481903251827651,
     ei    =  2.718281828459045235360,
     pi180 = 57.295779513082320876798,
     sqrt3 =  1.732050807568877293527,
     sqr3  =  0.577350269189625764509,
     sqr3p2=  3.732050807568877293527,
     sqr3m2=  0.267949192431122706473,
     sqr2  =  0.707106781186547524400;

REAL VAR rdg::0.4711; 
 
REAL PROC pi:   pii     END PROC pi; 
REAL PROC e :   ei      END PROC e; 
 
REAL PROC  ln  ( REAL CONST x ): 
     log2(x) * ln2
END PROC ln; 
 
REAL PROC log10( REAL CONST x ): 
     log2(x) * lg2 
END PROC log10; 

REAL PROC log2 ( REAL CONST z ): 
 REAL VAR t, summe::0.0, x::z;
 IF   x=1.0  THEN 0.0
 ELIF x>0.0  THEN normal
             ELSE errorstop("log2: " + text (x,20)); 0.0   FI. 

normal: 
  IF   x >= 0.5   THEN  normalise downwards 
                  ELSE  normalise upwards      FI; 
  IF   x < sqr2   THEN  summe := summe - 0.75; t := trans8
                  ELSE  summe := summe - 0.25; t := trans2  FI;
  summe + reihenentwicklung. 
 
 normalise downwards: 
  WHILE  x >= 8.0 REP    x := 0.0625 * x;  summe:=summe+4.0  PER; 
  WHILE  x >= 1.0 REP    x :=    0.5 * x;  summe:=summe+1.0  PER. 
 
 normalise upwards: 
  WHILE x<=0.0625 REP    x :=   16.0 * x;  summe:=summe-4.0  PER; 
  WHILE x<= 0.5   REP    x :=    2.0 * x;  summe:=summe-1.0  PER. 
 
 trans8: (x - 0.5946035575013605)/(x + 0.5946035575013605). 
 trans2: (x - 0.8408964152537145)/(x + 0.8408964152537145).
 
 reihenentwicklung:  x := t * t;         t * 0.06405572387119384648 * 
  ((((((3.465*x+4.095)*x+5.005)*x+6.435)*x+9.009)*x+15.015)*x+45.045)
END PROC log2;
 
REAL PROC sqrt ( REAL CONST z ): 
  REAL VAR y0, y1, x::z; 
  INT  VAR p :: decimal exponent(x) DIV 2; 
  IF   p <= -64  THEN 0.0
  ELIF x < 0.0  THEN errorstop("sqrt: " + text (x,20)); 0.0
                ELSE nontrivial    FI. 
 
 nontrivial: 
  set exp (decimal exponent (x) -p-p, x);
  IF x<10.0 THEN x := 5.3176703 - 40.760905/( 8.408065 + x )
            ELSE x := 16.81595  - 1288.973 /( 84.08065 + x )  FI; 
  y0 := x;
  set exp (decimal exponent (x) + p, y0);
  y1 := 0.5 * ( y0 + z/y0 ); 
  y0 := 0.5 * ( y1 + z/y1 ); 
  y1 := 0.5 * ( y0 + z/y0 ); 
        0.5 * ( y1 + z/y1 ) 
END PROC sqrt; 
 
REAL PROC exp ( REAL CONST z ): 
 REAL VAR x::z, a::1.0;  BOOL VAR negativ :: x<0.0;
 IF   negativ        THEN x := -x  FI;
 IF   x>292.42830676 
   THEN IF NOT negativ THEN errorstop ("REAL-Ueberlauf") FI ; 0.0
 ELIF x<=0.0001 
   THEN ( 0.5*z + 1.0 ) * z + 1.0
   ELSE approx 
 FI.
 
 approx: 
 IF x > ln10 
 THEN x := lge*x; 
      a := 1.0;
      set exp (int(x), a);
      x := frac(x)*ln10
 FI;
 IF x >= 2.0   THEN a := 7.389056098930650227230*a; x := x-2.0   FI;
 IF x >= 1.0   THEN a := 2.718281828459045235360*a; x := x-1.0   FI;
 IF x >= 0.5   THEN a := 1.648721270700128146848*a; x := x-0.5   FI;
 IF x >= 0.25  THEN a := 1.284025416687741484073*a; x := x-0.25  FI;
 IF x >= 0.125 THEN a := 1.133148453066826316829*a; x := x-0.125 FI;
 IF x >= 0.0625THEN a := 1.064494458917859429563*a; x := x-0.0625FI;
 a:=a/50.4*(((((((0.01*x+0.07)*x+0.42)*x+2.1)*x+8.4)*x+25.2)*x+50.4)*x+50.4);
 IF negativ THEN 1.0/a ELSE a FI .

ENDPROC exp ;

REAL PROC tan (REAL CONST x): 
  IF x < 0.0 THEN - tg( -x * pi4)
             ELSE   tg(  x * pi4)  FI
END PROC tan; 
 
REAL PROC tand (REAL CONST x): 
  IF x < 0.0 THEN - tg( -x / 45.0)
             ELSE   tg(  x / 45.0) FI
END PROC tand; 
 
REAL PROC tg (REAL CONST x ): 
  REAL VAR q::floor(x), s::x-q; INT VAR n;
  q := q - floor(0.25*q) * 4.0 ; 
  IF q < 2.0
  THEN IF q < 1.0
       THEN n:=0;
       ELSE n:=1; s := 1.0 - s FI
  ELSE IF q < 3.0
       THEN n:=2;
       ELSE n:=3; s := 1.0 - s FI
  FI;
  q := s * s;
  q := (((((((((-5.116186989653120e-11*q-5.608325022830701e-10)*q- 
  9.526170109403018e-9)*q-1.517906721393745e-7)*q-2.430939946375515e-6)*q- 
  3.901461426385464e-5)*q-6.324811612385572e-4)*q-1.076606829172646e-2)*q- 
  0.2617993877991508)*q+pi4); 

  SELECT n OF
  CASE 0 : s/q
  CASE 1 : q/s
  CASE 2 : -q/s
  OTHERWISE : -s/q ENDSELECT  .

END PROC tg;

REAL PROC sin ( REAL CONST x ): 
  REAL VAR y, r, q;
  IF x < 0.0 THEN y := -x; q := 4.0 ELSE y := x; q := 0.0 FI;
  y := y * pi4;
  r := floor(y);
  sincos( q+r , y-r )
END PROC sin; 
 
REAL PROC sind ( REAL CONST x ): 
  REAL VAR y, r, q; 
  IF x < 0.0 THEN y := -x; q := 4.0 ELSE y := x; q := 0.0 FI;
  y := y / 45.0;
  r := floor(y);
  sincos( q+r , y-r )
END PROC sind; 
 
REAL PROC cos ( REAL CONST x ): 
  REAL VAR y, q; 
  IF x < 0.0 THEN y := -x ELSE y := x FI;
  y := y * pi4;
  q := floor(y); 
  sincos( q+2.0, y-q )
END PROC cos; 
 
REAL PROC cosd ( REAL CONST x ): 
  REAL VAR y, q; 
  IF x < 0.0 THEN y := -x ELSE y := x FI;
  y := y / 45.0;
  q := floor(y);
  sincos( q+2.0, y-q )
END PROC cosd; 
 
REAL PROC sincos ( REAL CONST q, y ): 
 REAL VAR r :: q - floor( 0.125*q + 0.1 ) * 8.0;
 IF r >= 4.0 THEN IF r >= 6.0 THEN IF r >= 7.0 THEN - sin approx(1.0-y)
                                               ELSE - cos approx(y)  FI
                              ELSE IF r >= 5.0 THEN - cos approx(1.0-y)
                                               ELSE - sin approx(y)  FI FI
             ELSE IF r >= 2.0 THEN IF r >= 3.0 THEN   sin approx(1.0-y)
                                               ELSE   cos approx(y)  FI
                              ELSE IF r >= 1.0 THEN   cos approx(1.0-y)
                                               ELSE   sin approx(y)  FI FI FI
END PROC sincos; 
 
REAL PROC sin approx ( REAL CONST x ): 
 REAL VAR z::x*x; 
 x*((((((0.6877101540593035e-11*z-0.1757149296873372e-8)*z+0.3133616216672568
 e-6)*z-0.3657620415845891e-4)*z+0.2490394570188737e-2)*z-0.807455121882e-1)*
 z+0.7853981633974483)
END PROC sin approx; 
 
REAL PROC cos approx ( REAL CONST x ): 
 REAL VAR z::x*x; 
 ((((((-0.3857761864560276e-12*z+0.115004970178141e-9)*z-0.246113638267419e-7
 )*z+0.3590860445885748e-5)*z-0.3259918869266875e-3)*z+0.1585434424381541e-1)
 *z-0.3084251375340425)*z+1.0
END PROC cos approx; 
 
REAL PROC arctan ( REAL CONST y ): 
 REAL VAR f, z, x; BOOL VAR neg :: y < 0.0;
 IF   neg   THEN x := -y ELSE x := y FI;
 IF   x>1.0 THEN f := a ELSE f := -b; neg := NOT neg FI;
 z := x * x;
 x := x/(((((((0.0107090276046822*z-0.01647757182108040)*z 
      +0.02177846332482151)*z-0.03019339673273880)*z+0.04656083561183398)*z 
      -0.0888888888888888)*z+0.3333333333333333)*z+1.0);
 IF   neg   THEN  x - f  ELSE  f - x  FI.

 a:IF x>sqr3p2 THEN x := 1.0/x; pi2 ELSE x := 4.0/(sqrt3+x+x+x)-sqr3; pi3 FI.
 b:IF x<sqr3m2 THEN   0.0           ELSE x := sqrt3 - 4.0/(sqrt3+x);  pi6 FI
END PROC arctan; 
 
REAL PROC arctand ( REAL CONST x ): 
  arctan(x) * pi180
END PROC arctand; 
 
REAL OP ** ( REAL CONST b, e ): 
 IF b=0.0 
   THEN IF e=0.0 THEN 1.0 ELSE 0.0 FI
 ELIF b < 0.0 
   THEN errorstop("("+text(b,20)+") ** "+text(e)); (-b) ** e
 ELSE   exp( e * log2( b ) * ln2 )
 FI
END OP **;
 
REAL OP ** ( REAL CONST a, INT CONST b ) : 

  REAL VAR p := 1.0 ,
           r := a ;
  INT VAR  n := ABS b ,
           m ; 
  IF (a = 0.0 OR a = -0.0) 
    THEN IF b = 0
           THEN 1.0
           ELSE 0.0
         FI
    ELSE WHILE n>0 REP
           m := n DIV 2 ;
           IF m + m = n
             THEN n := m ;
                  r := r*r 
             ELSE n DECR 1 ;
                  p := p*r
           FI
         END REP ; 
         IF b>0
           THEN p
           ELSE 1.0 / p
         FI
  FI .

END OP ** ; 
 
REAL PROC random: 
  rdg:=rdg+pii;rdg:=rdg*rdg;rdg:=rdg*rdg;rdg:=rdg*rdg;rdg:=frac(rdg);rdg
END PROC random; 
 
PROC initializerandom ( REAL CONST z ): 
  rdg := frac(z) 
END PROC initializerandom; 
 
END PACKET mathlib;