1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
#include <stdio.h>
#include <util/twi.h>
#include <avr/interrupt.h>
#include <stdlib.h>
#include "i2c.h"
#include "common.h"
twReq twr;
static void twStartRaw () {
/* disable stop, enable interrupt, reset twint, enable start, enable i2c */
TWCR = (TWCR & ~(1 << TWSTO)) | (1 << TWIE) | (1 << TWINT) | (1 << TWSTA) | (1 << TWEN);
}
static void twStopRaw () {
/* disable start, enable interrupt, reset twint, enable stop, enable i2c */
TWCR = (TWCR & ~(1 << TWSTA)) | (1 << TWIE) | (1 << TWINT) | (1 << TWSTO) | (1 << TWEN);
}
static void twFlushRaw () {
/* disable start/stop, enable interrupt, reset twint, enable i2c */
TWCR = (TWCR & ~((1 << TWSTA) | (1 << TWSTO) | (1 << TWEA))) | (1 << TWIE) | (1 << TWINT) | (1 << TWEN);
}
/* flush and send master ack */
static void twFlushContRaw () {
/* disable start/stop, enable interrupt, reset twint, enable i2c, send master ack */
TWCR = (TWCR & ~((1 << TWSTA) | (1 << TWSTO))) | (1 << TWIE) | (1 << TWINT) | (1 << TWEN) | (1 << TWEA);
}
#if 0
/* unused */
static void twWaitRaw () {
while (!(TWCR & (1 << TWINT)));
}
#endif
static bool twWriteRaw (const uint8_t data) {
TWDR = data;
if (TWCR & (1 << TWWC)) {
puts ("write collision");
return false;
} else {
return true;
}
}
void twInit () {
#if F_CPU == 1000000
/* set scl to 3.6 kHz */
TWBR = 2;
TWSR |= 0x3; /* set prescaler to 64 */
#elif F_CPU == 4000000
/* set scl to 50 kHz ? */
TWBR = 32;
TWSR |= 0x0; /* set prescaler to 0 */
#elif F_CPU == 8000000
/* set scl to 100 kHz */
TWBR = 32;
TWSR |= 0x0; /* set prescaler to 0 */
#else
#error "cpu speed not supported"
#endif
twr.mode = TWM_INVALID;
twr.status = TWST_OK;
}
/* high-level write
*/
bool twRequest (const twMode mode, const uint8_t address,
const uint8_t subaddress, uint8_t * const data, const uint8_t count) {
assert (twr.status == TWST_OK);
assert (count > 0);
assert (data != NULL);
twr.mode = mode;
twr.address = address;
twr.subaddress = subaddress;
twr.data = data;
twr.count = count;
twr.i = 0;
twr.step = 0;
twr.status = TWST_WAIT;
/* wait for stop finish; there is no interrupt generated for this */
while (TW_STATUS != 0xf8 || TWCR & (1 << TWSTO));
twStartRaw ();
return true;
}
/* handle interrupt, write request
*/
static void twIntWrite () {
switch (twr.step) {
case 0:
if (TW_STATUS == TW_START) {
twWriteRaw (twr.address | TW_WRITE);
twFlushRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
}
break;
case 1:
if (TW_STATUS == TW_MT_SLA_ACK) {
/* write subaddress, enable auto-increment */
twWriteRaw ((1 << 7) | twr.subaddress);
twFlushRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
}
break;
case 2:
if (TW_STATUS == TW_MT_DATA_ACK) {
twWriteRaw (twr.data[twr.i]);
++twr.i;
twFlushRaw ();
if (twr.i >= twr.count) {
++twr.step;
}
} else {
twr.status = TWST_ERR;
}
break;
case 3:
if (TW_STATUS == TW_MT_DATA_ACK) {
twStopRaw ();
twr.status = TWST_OK;
} else {
twr.status = TWST_ERR;
}
break;
default:
assert (0 && "nope");
break;
}
}
/* handle interrupt, read request
*/
static void twIntRead () {
uint8_t status = TW_STATUS;
switch (twr.step) {
case 0:
if (status == TW_START) {
/* write device address */
twWriteRaw (twr.address | TW_WRITE);
twFlushRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 1:
if (status == TW_MT_SLA_ACK) {
/* write subaddress, enable auto-increment */
twWriteRaw ((1 << 7) | twr.subaddress);
twFlushRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 2:
if (status == TW_MT_DATA_ACK) {
/* send repeated start */
twStartRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 3:
if (status == TW_REP_START) {
/* now start the actual read request */
twWriteRaw (twr.address | TW_READ);
twFlushRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 4:
if (status == TW_MR_SLA_ACK) {
/* send master ack if next data block is received */
twFlushContRaw ();
++twr.step;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 5:
if (status == TW_MR_DATA_ACK) {
twr.data[twr.i] = TWDR;
++twr.i;
if (twr.i < twr.count) {
/* read another byte, not the last one */
twFlushContRaw ();
/* step stays the same */
} else {
/* read last byte, send master nack */
twFlushRaw ();
++twr.step;
}
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
case 6:
if (status == TW_MR_DATA_NACK) {
twStopRaw ();
twr.status = TWST_OK;
} else {
twr.status = TWST_ERR;
twr.error = status;
}
break;
default:
assert (0 && "twIntRead: nope\n");
break;
}
}
ISR(TWI_vect) {
switch (twr.mode) {
case TWM_WRITE:
twIntWrite ();
break;
case TWM_READ:
twIntRead ();
break;
default:
assert (0 && "nope\n");
break;
}
if (twr.status == TWST_ERR || twr.status == TWST_OK) {
enableWakeup (WAKE_I2C);
}
}
|