summaryrefslogtreecommitdiff
path: root/filters.c
diff options
context:
space:
mode:
Diffstat (limited to 'filters.c')
-rw-r--r--filters.c490
1 files changed, 490 insertions, 0 deletions
diff --git a/filters.c b/filters.c
new file mode 100644
index 0000000..1af5d4a
--- /dev/null
+++ b/filters.c
@@ -0,0 +1,490 @@
+/*
+ FLAM3 - cosmic recursive fractal flames
+ Copyright (C) 1992-2009 Spotworks LLC
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "filters.h"
+
+
+/*
+ * filter function definitions
+ * from Graphics Gems III code
+ * and ImageMagick resize.c
+ */
+
+
+double flam3_spatial_support[flam3_num_spatialfilters] = {
+
+ 1.5, /* gaussian */
+ 1.0, /* hermite */
+ 0.5, /* box */
+ 1.0, /* triangle */
+ 1.5, /* bell */
+ 2.0, /* b spline */
+ 2.0, /* mitchell */
+ 1.0, /* blackman */
+ 2.0, /* catrom */
+ 1.0, /* hanning */
+ 1.0, /* hamming */
+ 3.0, /* lanczos3 */
+ 2.0, /* lanczos2 */
+ 1.5 /* quadratic */
+};
+
+double flam3_hermite_filter(double t) {
+ /* f(t) = 2|t|^3 - 3|t|^2 + 1, -1 <= t <= 1 */
+ if(t < 0.0) t = -t;
+ if(t < 1.0) return((2.0 * t - 3.0) * t * t + 1.0);
+ return(0.0);
+}
+
+double flam3_box_filter(double t) {
+ if((t > -0.5) && (t <= 0.5)) return(1.0);
+ return(0.0);
+}
+
+double flam3_triangle_filter(double t) {
+ if(t < 0.0) t = -t;
+ if(t < 1.0) return(1.0 - t);
+ return(0.0);
+}
+
+double flam3_bell_filter(double t) {
+ /* box (*) box (*) box */
+ if(t < 0) t = -t;
+ if(t < .5) return(.75 - (t * t));
+ if(t < 1.5) {
+ t = (t - 1.5);
+ return(.5 * (t * t));
+ }
+ return(0.0);
+}
+
+double flam3_b_spline_filter(double t) {
+
+ /* box (*) box (*) box (*) box */
+ double tt;
+
+ if(t < 0) t = -t;
+ if(t < 1) {
+ tt = t * t;
+ return((.5 * tt * t) - tt + (2.0 / 3.0));
+ } else if(t < 2) {
+ t = 2 - t;
+ return((1.0 / 6.0) * (t * t * t));
+ }
+ return(0.0);
+}
+
+double flam3_sinc(double x) {
+ x *= M_PI;
+ if(x != 0) return(sin(x) / x);
+ return(1.0);
+}
+
+double flam3_blackman_filter(double x) {
+ return(0.42+0.5*cos(M_PI*x)+0.08*cos(2*M_PI*x));
+}
+
+double flam3_catrom_filter(double x) {
+ if (x < -2.0)
+ return(0.0);
+ if (x < -1.0)
+ return(0.5*(4.0+x*(8.0+x*(5.0+x))));
+ if (x < 0.0)
+ return(0.5*(2.0+x*x*(-5.0-3.0*x)));
+ if (x < 1.0)
+ return(0.5*(2.0+x*x*(-5.0+3.0*x)));
+ if (x < 2.0)
+ return(0.5*(4.0+x*(-8.0+x*(5.0-x))));
+ return(0.0);
+}
+
+double flam3_mitchell_filter(double t) {
+ double tt;
+
+ tt = t * t;
+ if(t < 0) t = -t;
+ if(t < 1.0) {
+ t = (((12.0 - 9.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ + ((-18.0 + 12.0 * flam3_mitchell_b + 6.0 * flam3_mitchell_c) * tt)
+ + (6.0 - 2 * flam3_mitchell_b));
+ return(t / 6.0);
+ } else if(t < 2.0) {
+ t = (((-1.0 * flam3_mitchell_b - 6.0 * flam3_mitchell_c) * (t * tt))
+ + ((6.0 * flam3_mitchell_b + 30.0 * flam3_mitchell_c) * tt)
+ + ((-12.0 * flam3_mitchell_b - 48.0 * flam3_mitchell_c) * t)
+ + (8.0 * flam3_mitchell_b + 24 * flam3_mitchell_c));
+ return(t / 6.0);
+ }
+ return(0.0);
+}
+
+double flam3_hanning_filter(double x) {
+ return(0.5+0.5*cos(M_PI*x));
+}
+
+double flam3_hamming_filter(double x) {
+ return(0.54+0.46*cos(M_PI*x));
+}
+
+double flam3_lanczos3_filter(double t) {
+ if(t < 0) t = -t;
+ if(t < 3.0) return(flam3_sinc(t) * flam3_sinc(t/3.0));
+ return(0.0);
+}
+
+double flam3_lanczos2_filter(double t) {
+ if(t < 0) t = -t;
+ if(t < 2.0) return(flam3_sinc(t) * flam3_sinc(t/2.0));
+ return(0.0);
+}
+
+double flam3_gaussian_filter(double x) {
+ return(exp((-2.0*x*x))*sqrt(2.0/M_PI));
+}
+
+double flam3_quadratic_filter(double x) {
+ if (x < -1.5)
+ return(0.0);
+ if (x < -0.5)
+ return(0.5*(x+1.5)*(x+1.5));
+ if (x < 0.5)
+ return(0.75-x*x);
+ if (x < 1.5)
+ return(0.5*(x-1.5)*(x-1.5));
+ return(0.0);
+}
+
+double flam3_spatial_filter(int knum, double x) {
+
+ if (knum==0)
+ return flam3_gaussian_filter(x);
+ else if (knum==1)
+ return flam3_hermite_filter(x);
+ else if (knum==2)
+ return flam3_box_filter(x);
+ else if (knum==3)
+ return flam3_triangle_filter(x);
+ else if (knum==4)
+ return flam3_bell_filter(x);
+ else if (knum==5)
+ return flam3_b_spline_filter(x);
+ else if (knum==6)
+ return flam3_mitchell_filter(x);
+ else if (knum==7)
+ return flam3_sinc(x)*flam3_blackman_filter(x);
+ else if (knum==8)
+ return flam3_catrom_filter(x);
+ else if (knum==9)
+ return flam3_sinc(x)*flam3_hanning_filter(x);
+ else if (knum==10)
+ return flam3_sinc(x)*flam3_hamming_filter(x);
+ else if (knum==11)
+ return flam3_lanczos3_filter(x)*flam3_sinc(x/3.0);
+ else if (knum==12)
+ return flam3_lanczos2_filter(x)*flam3_sinc(x/2.0);
+ else if (knum==13)
+ return flam3_quadratic_filter(x);
+}
+
+int normalize_vector(double *v, int n) {
+ double t = 0.0;
+ int i;
+ for (i = 0; i < n; i++)
+ t += v[i];
+ if (0.0 == t) return 1;
+ t = 1.0 / t;
+ for (i = 0; i < n; i++)
+ v[i] *= t;
+ return 0;
+}
+
+
+int flam3_create_spatial_filter(flam3_frame *spec, int field, double **filter) {
+
+ int sf_kernel = spec->genomes[0].spatial_filter_select;
+ int supersample = spec->genomes[0].spatial_oversample;
+ double sf_radius = spec->genomes[0].spatial_filter_radius;
+ double aspect_ratio = spec->pixel_aspect_ratio;
+ double sf_supp = flam3_spatial_support[sf_kernel];
+
+ double fw = 2.0 * sf_supp * supersample * sf_radius / aspect_ratio;
+ double adjust, ii, jj;
+
+ int fwidth = ((int) fw) + 1;
+ int i,j;
+
+
+ /* Make sure the filter kernel has same parity as oversample */
+ if ((fwidth ^ supersample) & 1)
+ fwidth++;
+
+ /* Calculate the coordinate scaling factor for the kernel values */
+ if (fw > 0.0)
+ adjust = sf_supp * fwidth / fw;
+ else
+ adjust = 1.0;
+
+ /* Calling function MUST FREE THE RETURNED KERNEL, lest ye leak memory */
+ (*filter) = (double *)calloc(fwidth * fwidth,sizeof(double));
+
+ /* fill in the coefs */
+ for (i = 0; i < fwidth; i++)
+ for (j = 0; j < fwidth; j++) {
+
+ /* Calculate the function inputs for the kernel function */
+ ii = ((2.0 * i + 1.0) / (double)fwidth - 1.0)*adjust;
+ jj = ((2.0 * j + 1.0) / (double)fwidth - 1.0)*adjust;
+
+ /* Scale for scanlines */
+ if (field) jj *= 2.0;
+
+ /* Adjust for aspect ratio */
+ jj /= aspect_ratio;
+
+ (*filter)[i + j * fwidth] =
+ flam3_spatial_filter(sf_kernel,ii) * flam3_spatial_filter(sf_kernel,jj);
+ }
+
+
+ if (normalize_vector((*filter), fwidth * fwidth)) {
+ fprintf(stderr, "Spatial filter value is too small: %g. Terminating.\n",sf_radius);
+ return(-1);
+ }
+
+ return (fwidth);
+}
+
+flam3_de_helper flam3_create_de_filters(double max_rad, double min_rad, double curve, int ss) {
+
+ flam3_de_helper de;
+ double comp_max_radius, comp_min_radius;
+ double num_de_filters_d;
+ int num_de_filters,de_max_ind;
+ int de_row_size, de_half_size;
+ int filtloop;
+ int keep_thresh=100;
+
+ de.kernel_size=-1;
+
+ if (curve <= 0.0) {
+ fprintf(stderr,"estimator curve must be > 0\n");
+ return(de);
+ }
+
+ if (max_rad < min_rad) {
+ fprintf(stderr,"estimator must be larger than estimator_minimum.\n");
+ fprintf(stderr,"(%f > %f) ? \n",max_rad,min_rad);
+ return(de);
+ }
+
+ /* We should scale the filter width by the oversample */
+ /* The '+1' comes from the assumed distance to the first pixel */
+ comp_max_radius = max_rad*ss + 1;
+ comp_min_radius = min_rad*ss + 1;
+
+ /* Calculate how many filter kernels we need based on the decay function */
+ /* */
+ /* num filters = (de_max_width / de_min_width)^(1/estimator_curve) */
+ /* */
+ num_de_filters_d = pow( comp_max_radius/comp_min_radius, 1.0/curve );
+ if (num_de_filters_d>1e7) {
+ fprintf(stderr,"too many filters required in this configuration (%g)\n",num_de_filters_d);
+ return(de);
+ }
+ num_de_filters = (int)ceil(num_de_filters_d);
+
+ /* Condense the smaller kernels to save space */
+ if (num_de_filters>keep_thresh) {
+ de_max_ind = (int)ceil(DE_THRESH + pow(num_de_filters-DE_THRESH,curve))+1;
+ de.max_filtered_counts = (int)pow( (double)(de_max_ind-DE_THRESH), 1.0/curve) + DE_THRESH;
+ } else {
+ de_max_ind = num_de_filters;
+ de.max_filtered_counts = de_max_ind;
+ }
+
+ /* Allocate the memory for these filters */
+ /* and the hit/width lookup vector */
+ de_row_size = (int)(2*ceil(comp_max_radius)-1);
+ de_half_size = (de_row_size-1)/2;
+ de.kernel_size = (de_half_size+1)*(2+de_half_size)/2;
+
+ de.filter_coefs = (double *) calloc (de_max_ind * de.kernel_size,sizeof(double));
+ de.filter_widths = (double *) calloc (de_max_ind,sizeof(double));
+
+ /* Generate the filter coefficients */
+ de.max_filter_index = 0;
+ for (filtloop=0;filtloop<de_max_ind;filtloop++) {
+
+ double de_filt_sum=0.0, de_filt_d;
+ double de_filt_h;
+ int dej,dek;
+ double adjloop;
+ int filter_coef_idx;
+
+ /* Calculate the filter width for this number of hits in a bin */
+ if (filtloop<keep_thresh)
+ de_filt_h = (comp_max_radius / pow(filtloop+1,curve));
+ else {
+ adjloop = pow(filtloop-keep_thresh,(1.0/curve)) + keep_thresh;
+ de_filt_h = (comp_max_radius / pow(adjloop+1,curve));
+ }
+
+ /* Once we've reached the min radius, don't populate any more */
+ if (de_filt_h <= comp_min_radius) {
+ de_filt_h = comp_min_radius;
+ de.max_filter_index = filtloop;
+ }
+
+ de.filter_widths[filtloop] = de_filt_h;
+
+ /* Calculate norm of kernel separately (easier) */
+ for (dej=-de_half_size; dej<=de_half_size; dej++) {
+ for (dek=-de_half_size; dek<=de_half_size; dek++) {
+
+ de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;
+
+ /* Only populate the coefs within this radius */
+ if (de_filt_d <= 1.0) {
+
+ /* Gaussian */
+ de_filt_sum += flam3_spatial_filter(flam3_gaussian_kernel,
+ flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d);
+
+ /* Epanichnikov */
+// de_filt_sum += (1.0 - (de_filt_d * de_filt_d));
+ }
+ }
+ }
+
+ filter_coef_idx = filtloop*de.kernel_size;
+
+ /* Calculate the unique entries of the kernel */
+ for (dej=0; dej<=de_half_size; dej++) {
+ for (dek=0; dek<=dej; dek++) {
+ de_filt_d = sqrt( (double)(dej*dej+dek*dek) ) / de_filt_h;
+
+ /* Only populate the coefs within this radius */
+ if (de_filt_d>1.0)
+ de.filter_coefs[filter_coef_idx] = 0.0;
+ else {
+
+ /* Gaussian */
+ de.filter_coefs[filter_coef_idx] = flam3_spatial_filter(flam3_gaussian_kernel,
+ flam3_spatial_support[flam3_gaussian_kernel]*de_filt_d)/de_filt_sum;
+
+ /* Epanichnikov */
+// de_filter_coefs[filter_coef_idx] = (1.0 - (de_filt_d * de_filt_d))/de_filt_sum;
+ }
+
+ filter_coef_idx ++;
+ }
+ }
+
+ if (de.max_filter_index>0)
+ break;
+ }
+
+ if (de.max_filter_index==0)
+ de.max_filter_index = de_max_ind-1;
+
+
+ return(de);
+}
+
+double flam3_create_temporal_filter(int numsteps, int filter_type, double filter_exp, double filter_width,
+ double **temporal_filter, double **temporal_deltas) {
+
+ double maxfilt = 0.0;
+ double sumfilt = 0.0;
+ double slpx,halfsteps;
+ double *deltas, *filter;
+
+ int i;
+
+ /* Allocate memory - this must be freed in the calling routine! */
+ deltas = (double *)malloc(numsteps*sizeof(double));
+ filter = (double *)malloc(numsteps*sizeof(double));
+
+ /* Deal with only one step */
+ if (numsteps==1) {
+ deltas[0] = 0;
+ filter[0] = 1.0;
+ *temporal_deltas = deltas;
+ *temporal_filter = filter;
+ return(1.0);
+ }
+
+ /* Define the temporal deltas */
+ for (i = 0; i < numsteps; i++)
+ deltas[i] = ((double)i /(double)(numsteps - 1) - 0.5)*filter_width;
+
+ /* Define the filter coefs */
+ if (flam3_temporal_exp == filter_type) {
+
+ for (i=0; i < numsteps; i++) {
+
+ if (filter_exp>=0)
+ slpx = ((double)i+1.0)/numsteps;
+ else
+ slpx = (double)(numsteps - i)/numsteps;
+
+ /* Scale the color based on these values */
+ filter[i] = pow(slpx,fabs(filter_exp));
+
+ /* Keep the max */
+ if (filter[i]>maxfilt)
+ maxfilt = filter[i];
+ }
+
+ } else if (flam3_temporal_gaussian == filter_type) {
+
+ halfsteps = numsteps/2.0;
+ for (i=0; i < numsteps; i++) {
+
+ /* Gaussian */
+ filter[i] = flam3_spatial_filter(flam3_gaussian_kernel,
+ flam3_spatial_support[flam3_gaussian_kernel]*fabs(i - halfsteps)/halfsteps);
+ /* Keep the max */
+ if (filter[i]>maxfilt)
+ maxfilt = filter[i];
+ }
+
+ } else { // (flam3_temporal_box)
+
+ for (i=0; i < numsteps; i++)
+ filter[i] = 1.0;
+
+ maxfilt = 1.0;
+
+ }
+
+ /* Adjust the filter so that the max is 1.0, and */
+ /* calculate the K2 scaling factor */
+ for (i=0;i<numsteps;i++) {
+ filter[i] /= maxfilt;
+ sumfilt += filter[i];
+ }
+
+ sumfilt /= numsteps;
+
+ *temporal_deltas = deltas;
+ *temporal_filter = filter;
+
+ return(sumfilt);
+}
+