1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
|
/*
Copyright (C) 1992-2009 Spotworks LLC
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "interpolation.h"
#include "palettes.h"
#include <assert.h>
#define INTERP(x) do { result->x = 0.0; \
for (k = 0; k < ncp; k++) result->x += c[k] * cpi[k].x; } while(0)
#define INTERI(x) do { double tt = 0.0; \
for (k = 0; k < ncp; k++) tt += c[k] * cpi[k].x; \
result->x = (int)rint(tt); } while(0)
int id_matrix(double2 s[3]) {
return
(s[0][0] == 1.0) &&
(s[0][1] == 0.0) &&
(s[1][0] == 0.0) &&
(s[1][1] == 1.0) &&
(s[2][0] == 0.0) &&
(s[2][1] == 0.0);
}
static void clear_matrix(double2 m[3]) {
const double2 zero = (double2) { 0.0, 0.0 };
m[0] = zero;
m[1] = zero;
m[2] = zero;
}
static void sum_matrix(double s, const double2 m1[3], double2 m2[3]) {
m2[0] += s * m1[0];
m2[1] += s * m1[1];
m2[2] += s * m1[2];
}
#if 0
void interpolate_cmap(flam3_palette cmap, double blend,
int index0, double hue0, int index1, double hue1,
randctx * const rc) {
flam3_palette p0,p1;
int i, j, rcode;
rcode = flam3_get_palette(index0, p0, hue0, rc);
if (rcode<0)
fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index0);
rcode = flam3_get_palette(index1, p1, hue1, rc);
if (rcode<0)
fprintf(stderr,"unable to retrieve palette %d, setting to white\n", index1);
for (i = 0; i < 256; i++) {
double4 t, s;
double t4, s4;
s = rgb2hsv(vector_d4 (p0[i].color));
t = rgb2hsv(vector_d4 (p1[i].color));
s[3] = p0[i].color[3];
t[3] = p1[i].color[3];
s4 = p0[i].index;
t4 = p1[i].index;
for (j = 0; j < 4; j++)
t[j] = ((1.0-blend) * s[j]) + (blend * t[j]);
t4 = ((1.0-blend) * s4) + (blend * t4);
const double4 c = hsv2rgb(t);
cmap[i].color[0] = c[0];
cmap[i].color[1] = c[1];
cmap[i].color[2] = c[2];
cmap[i].color[3] = t[3];
cmap[i].index = t4;
}
}
#endif
static void interp_and_convert_back(double *c, int ncps, int xfi, double cxang[4][2],
double cxmag[4][2], double cxtrn[4][2],double store_array[3][2]) {
int i,col;
double accang[2],accmag[2];
double expmag;
int accmode[2];
accang[0] = 0.0;
accang[1] = 0.0;
accmag[0] = 0.0;
accmag[1] = 0.0;
accmode[0]=accmode[1]=0;
/* accumulation mode defaults to logarithmic, but in special */
/* cases we want to switch to linear accumulation */
for (col=0; col<2; col++) {
for (i=0; i<ncps; i++) {
if (log(cxmag[i][col])<-10)
accmode[col]=1; // Mode set to linear interp
}
}
for (i=0; i<ncps; i++) {
for (col=0; col<2; col++) {
accang[col] += c[i] * cxang[i][col];
if (accmode[col]==0)
accmag[col] += c[i] * log(cxmag[i][col]);
else
accmag[col] += c[i] * (cxmag[i][col]);
/* translation is ready to go */
store_array[2][col] += c[i] * cxtrn[i][col];
}
}
/* Convert the angle back to rectangular */
for (col=0;col<2;col++) {
if (accmode[col]==0)
expmag = exp(accmag[col]);
else
expmag = accmag[col];
store_array[col][0] = expmag * cos(accang[col]);
store_array[col][1] = expmag * sin(accang[col]);
}
}
static void convert_linear_to_polar(flam3_genome *cp, int ncps, int xfi, int cflag,
double cxang[4][2], double cxmag[4][2], double cxtrn[4][2]) {
double c1[2],d,t,refang;
int col,k;
int zlm[2];
for (k=0; k<ncps;k++) {
/* Establish the angles and magnitudes for each component */
/* Keep translation linear */
zlm[0]=zlm[1]=0;
for (col=0;col<2;col++) {
if (cflag==0) {
c1[0] = cp[k].xform[xfi].c[col][0];
c1[1] = cp[k].xform[xfi].c[col][1];
t = cp[k].xform[xfi].c[2][col];
} else {
c1[0] = cp[k].xform[xfi].post[col][0];
c1[1] = cp[k].xform[xfi].post[col][1];
t = cp[k].xform[xfi].post[2][col];
}
cxang[k][col] = atan2(c1[1],c1[0]);
cxmag[k][col] = sqrt(c1[0]*c1[0] + c1[1]*c1[1]);
if (cxmag[k][col]== 0.0)
zlm[col]=1;
cxtrn[k][col] = t;
}
if (zlm[0]==1 && zlm[1]==0)
cxang[k][0] = cxang[k][1];
else if (zlm[0]==0 && zlm[1]==1)
cxang[k][1] = cxang[k][0];
}
/* Make sure the rotation is the shorter direction around the circle */
/* by adjusting each angle in succession, and rotate clockwise if 180 degrees */
for (col=0; col<2; col++) {
for (k=1;k<ncps;k++) {
/* Adjust angles differently if we have an asymmetric case */
if (cp[k].xform[xfi].wind[col]>0 && cflag==0) {
/* Adjust the angles to make sure that it's within wind:wind+2pi */
refang = cp[k].xform[xfi].wind[col] - 2*M_PI;
/* Make sure both angles are within [refang refang+2*pi] */
while(cxang[k-1][col] < refang)
cxang[k-1][col] += 2*M_PI;
while(cxang[k-1][col] > refang + 2*M_PI)
cxang[k-1][col] -= 2*M_PI;
while(cxang[k][col] < refang)
cxang[k][col] += 2*M_PI;
while(cxang[k][col] > refang + 2*M_PI)
cxang[k][col] -= 2*M_PI;
} else {
/* Normal way of adjusting angles */
d = cxang[k][col]-cxang[k-1][col];
/* Adjust to avoid the -pi/pi discontinuity */
if (d > M_PI+EPS)
cxang[k][col] -= 2*M_PI;
else if (d < -(M_PI-EPS) ) /* Forces clockwise rotation at 180 */
cxang[k][col] += 2*M_PI;
}
}
}
}
void interpolate_catmull_rom(flam3_genome cps[], double t, flam3_genome *result) {
double t2 = t * t;
double t3 = t2 * t;
double cmc[4];
cmc[0] = (2*t2 - t - t3) / 2;
cmc[1] = (3*t3 - 5*t2 + 2) / 2;
cmc[2] = (4*t2 - 3*t3 + t) / 2;
cmc[3] = (t3 - t2) / 2;
flam3_interpolate_n(result, 4, cps, cmc, 0);
}
static double smoother(double t) {
return 3*t*t - 2*t*t*t;
}
static double get_stagger_coef(double t, double stagger_prc, int num_xforms, int this_xform) {
/* max_stag is the spacing between xform start times if stagger_prc = 1.0 */
double max_stag = (double)(num_xforms-1)/num_xforms;
/* scale the spacing by stagger_prc */
double stag_scaled = stagger_prc * max_stag;
/* t ranges from 1 to 0 (the contribution of cp[0] to the blend) */
/* the first line below makes the first xform interpolate first */
/* the second line makes the last xform interpolate first */
double st = stag_scaled * (num_xforms - 1 - this_xform) / (num_xforms-1);
// double st = stag_scaled * (this_xform) / (num_xforms-1);
double et = st + (1-stag_scaled);
// printf("t=%f xf:%d st=%f et=%f : : %f\n",t,this_xform,st,et,smoother((t-st)/(1-stag_scaled)));
if (t <= st)
return (0);
else if (t >= et)
return (1);
else
return ( smoother((t-st)/(1-stag_scaled)) );
}
/* all cpi and result must be aligned (have the same number of xforms,
and have final xform in the same slot) */
void flam3_interpolate_n(flam3_genome *result, int ncp,
flam3_genome *cpi, double *c, double stagger) {
int i, j, k, numstd;
/* HSV palette interpolation */
for (i = 0; i < cpi[0].palette.count; i++) {
double4 s, t;
int alpha1 = 1;
s[0] = s[1] = s[2] = s[3] = 0.0;
for (k = 0; k < ncp; k++) {
assert (cpi[k].palette.count == cpi[0].palette.count);
t = rgb2hsv(cpi[k].palette.color[i]);
for (j = 0; j < 3; j++)
s[j] += c[k] * t[j];
s[3] += c[k] * cpi[k].palette.color[i][3];
if (cpi[k].palette.color[i][3] != 1.0)
alpha1 = 0;
}
if (alpha1 == 1)
s[3] = 1.0;
const double4 ret_color = hsv2rgb(s);
palette_add (&result->palette, (double4) { ret_color[0], ret_color[1],
ret_color[2], s[3] });
}
result->symmetry = 0;
result->palette_mode = cpi[0].palette_mode;
result->interpolation_type = cpi[0].interpolation_type;
INTERP(brightness);
INTERP(contrast);
INTERP(highlight_power);
INTERP(gamma);
INTERP(vibrancy);
INTERP(hue_rotation);
INTERI(width);
INTERI(height);
INTERP(center[0]);
INTERP(center[1]);
INTERP(pixels_per_unit);
INTERP(zoom);
INTERP(rotate);
INTERP(gam_lin_thresh);
/* Interpolate the chaos array */
numstd = cpi[0].num_xforms - (cpi[0].final_xform_index >= 0);
for (i=0;i<numstd;i++) {
for (j=0;j<numstd;j++) {
INTERP(chaos[i][j]);
if (result->chaos[i][j]<0) result->chaos[i][j]=0;
//chaos can be > 1
//if (result->chaos[i][j]>1) result->chaos[i][j]=1.0;
}
}
/* Interpolate each xform */
for (i = 0; i < cpi[0].num_xforms; i++) {
double csave[2];
double td;
int all_id;
int nx = cpi[0].num_xforms-(cpi[0].final_xform_index>=0);
if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) {
csave[0] = c[0];
csave[1] = c[1];
c[0] = get_stagger_coef(csave[0],stagger,nx,i);
c[1] = 1.0-c[0];
}
INTERP(xform[i].density);
td = result->xform[i].density;
result->xform[i].density = (td < 0.0) ? 0.0 : td;
INTERP(xform[i].color);
if (result->xform[i].color<0) result->xform[i].color=0;
if (result->xform[i].color>1) result->xform[i].color=1;
INTERP(xform[i].color_speed);
if (result->xform[i].color_speed<0) result->xform[i].color_speed=0;
if (result->xform[i].color_speed>1) result->xform[i].color_speed=1;
INTERP(xform[i].opacity);
INTERP(xform[i].animate);
INTERP(xform[i].blob_low);
INTERP(xform[i].blob_high);
INTERP(xform[i].blob_waves);
INTERP(xform[i].pdj_ac[0]);
INTERP(xform[i].pdj_bd[0]);
INTERP(xform[i].pdj_ac[1]);
INTERP(xform[i].pdj_bd[1]);
INTERP(xform[i].fan2_x);
INTERP(xform[i].fan2_y);
INTERP(xform[i].rings2_val);
INTERP(xform[i].perspective_angle);
INTERP(xform[i].perspective_dist);
INTERP(xform[i].julian_power);
INTERP(xform[i].julian_dist);
INTERP(xform[i].juliascope_power);
INTERP(xform[i].juliascope_dist);
INTERP(xform[i].radial_blur_angle);
INTERP(xform[i].pie_slices);
INTERP(xform[i].pie_rotation);
INTERP(xform[i].pie_thickness);
INTERP(xform[i].ngon_sides);
INTERP(xform[i].ngon_power);
INTERP(xform[i].ngon_circle);
INTERP(xform[i].ngon_corners);
INTERP(xform[i].curl_c1);
INTERP(xform[i].curl_c2);
INTERP(xform[i].rectangles_x);
INTERP(xform[i].rectangles_y);
INTERP(xform[i].disc2_rot);
INTERP(xform[i].disc2_twist);
INTERP(xform[i].super_shape_rnd);
INTERP(xform[i].super_shape_m);
INTERP(xform[i].super_shape_n1);
INTERP(xform[i].super_shape_n2);
INTERP(xform[i].super_shape_n3);
INTERP(xform[i].super_shape_holes);
INTERP(xform[i].flower_petals);
INTERP(xform[i].flower_holes);
INTERP(xform[i].conic_eccentricity);
INTERP(xform[i].conic_holes);
INTERP(xform[i].parabola_height);
INTERP(xform[i].parabola_width);
INTERP(xform[i].bent2_x);
INTERP(xform[i].bent2_y);
INTERP(xform[i].bipolar_shift);
INTERP(xform[i].cell_size);
INTERP(xform[i].cpow_r);
INTERP(xform[i].cpow_i);
INTERP(xform[i].cpow_power);
INTERP(xform[i].curve_xamp);
INTERP(xform[i].curve_yamp);
INTERP(xform[i].curve_xlength);
INTERP(xform[i].curve_ylength);
INTERP(xform[i].escher_beta);
INTERP(xform[i].lazysusan_x);
INTERP(xform[i].lazysusan_y);
INTERP(xform[i].lazysusan_twist);
INTERP(xform[i].lazysusan_space);
INTERP(xform[i].lazysusan_spin);
INTERP(xform[i].modulus_x);
INTERP(xform[i].modulus_y);
INTERP(xform[i].oscope_separation);
INTERP(xform[i].oscope_frequency);
INTERP(xform[i].oscope_amplitude);
INTERP(xform[i].oscope_damping);
INTERP(xform[i].popcorn2_x);
INTERP(xform[i].popcorn2_y);
INTERP(xform[i].popcorn2_c);
INTERP(xform[i].separation_x);
INTERP(xform[i].separation_xinside);
INTERP(xform[i].separation_y);
INTERP(xform[i].separation_yinside);
INTERP(xform[i].split_xsize);
INTERP(xform[i].split_ysize);
INTERP(xform[i].splits_x);
INTERP(xform[i].splits_y);
INTERP(xform[i].stripes_space);
INTERP(xform[i].stripes_warp);
INTERP(xform[i].wedge_angle);
INTERP(xform[i].wedge_hole);
INTERP(xform[i].wedge_count);
INTERP(xform[i].wedge_swirl);
INTERP(xform[i].wedge_julia_angle);
INTERP(xform[i].wedge_julia_count);
INTERP(xform[i].wedge_julia_power);
INTERP(xform[i].wedge_julia_dist);
INTERP(xform[i].wedge_sph_angle);
INTERP(xform[i].wedge_sph_hole);
INTERP(xform[i].wedge_sph_count);
INTERP(xform[i].wedge_sph_swirl);
INTERP(xform[i].whorl_inside);
INTERP(xform[i].whorl_outside);
INTERP(xform[i].waves2_scalex);
INTERP(xform[i].waves2_scaley);
INTERP(xform[i].waves2_freqx);
INTERP(xform[i].waves2_freqy);
INTERP(xform[i].auger_sym);
INTERP(xform[i].auger_weight);
INTERP(xform[i].auger_freq);
INTERP(xform[i].auger_scale);
INTERP(xform[i].flux_spread);
INTERP(xform[i].mobius_re_a);
INTERP(xform[i].mobius_im_a);
INTERP(xform[i].mobius_re_b);
INTERP(xform[i].mobius_im_b);
INTERP(xform[i].mobius_re_c);
INTERP(xform[i].mobius_im_c);
INTERP(xform[i].mobius_re_d);
INTERP(xform[i].mobius_im_d);
INTERP(xform[i].asteria_alpha);
INTERP(xform[i].bcollide_num);
INTERP(xform[i].bcollide_a);
for (j = 0; j < flam3_nvariations; j++)
INTERP(xform[i].var[j]);
if (flam3_inttype_log == cpi[0].interpolation_type) {
double cxmag[4][2]; // XXX why only 4? should be ncp
double cxang[4][2];
double cxtrn[4][2];
/* affine part */
clear_matrix(result->xform[i].c);
convert_linear_to_polar(cpi,ncp,i,0,cxang,cxmag,cxtrn);
interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].c);
/* post part */
all_id = 1;
for (k=0; k<ncp; k++)
all_id &= id_matrix(cpi[k].xform[i].post);
clear_matrix(result->xform[i].post);
if (all_id) {
result->xform[i].post[0][0] = 1.0;
result->xform[i].post[1][1] = 1.0;
} else {
convert_linear_to_polar(cpi,ncp,i,1,cxang,cxmag,cxtrn);
interp_and_convert_back(c, ncp, i, cxang, cxmag, cxtrn,result->xform[i].post);
}
} else {
/* Interpolate c matrix & post */
clear_matrix(result->xform[i].c);
clear_matrix(result->xform[i].post);
all_id = 1;
for (k = 0; k < ncp; k++) {
sum_matrix(c[k], cpi[k].xform[i].c, result->xform[i].c);
sum_matrix(c[k], cpi[k].xform[i].post, result->xform[i].post);
all_id &= id_matrix(cpi[k].xform[i].post);
}
if (all_id) {
clear_matrix(result->xform[i].post);
result->xform[i].post[0][0] = 1.0;
result->xform[i].post[1][1] = 1.0;
}
}
if (ncp==2 && stagger>0 && i!=cpi[0].final_xform_index) {
c[0] = csave[0];
c[1] = csave[1];
}
}
}
static void establish_asymmetric_refangles(flam3_genome *cp, int ncps) {
int k, xfi, col;
double cxang[4][2],d,c1[2];
for (xfi=0; xfi<cp[0].num_xforms; xfi++) {
/* Final xforms don't rotate regardless of their symmetry */
if (cp[0].final_xform_enable==1 && xfi==cp[0].final_xform_index)
continue;
for (k=0; k<ncps;k++) {
/* Establish the angle for each component */
/* Should potentially functionalize */
for (col=0;col<2;col++) {
c1[0] = cp[k].xform[xfi].c[col][0];
c1[1] = cp[k].xform[xfi].c[col][1];
cxang[k][col] = atan2(c1[1],c1[0]);
}
}
for (k=1; k<ncps; k++) {
for (col=0;col<2;col++) {
int sym0,sym1;
int padsymflag;
d = cxang[k][col]-cxang[k-1][col];
/* Adjust to avoid the -pi/pi discontinuity */
if (d > M_PI+EPS)
cxang[k][col] -= 2*M_PI;
else if (d < -(M_PI-EPS) )
cxang[k][col] += 2*M_PI;
/* If this is an asymmetric case, store the NON-symmetric angle */
/* Check them pairwise and store the reference angle in the second */
/* to avoid overwriting if asymmetric on both sides */
padsymflag = 0;
sym0 = (cp[k-1].xform[xfi].animate==0 || (cp[k-1].xform[xfi].padding==1 && padsymflag));
sym1 = (cp[k].xform[xfi].animate==0 || (cp[k].xform[xfi].padding==1 && padsymflag));
if ( sym1 && !sym0 )
cp[k].xform[xfi].wind[col] = cxang[k-1][col] + 2*M_PI;
else if ( sym0 && !sym1 )
cp[k].xform[xfi].wind[col] = cxang[k][col] + 2*M_PI;
}
}
}
}
void flam3_align(flam3_genome *dst, flam3_genome *src, int nsrc) {
int i, tfx, tnx, max_nx = 0, max_fx = 0;
int already_aligned=1;
int xf,j;
int ii,fnd;
double normed;
int usethisone;
usethisone = (nsrc/2) - 1;
max_nx = src[0].num_xforms - (src[0].final_xform_index >= 0);
max_fx = src[0].final_xform_enable;
for (i = 1; i < nsrc; i++) {
tnx = src[i].num_xforms - (src[i].final_xform_index >= 0);
if (max_nx != tnx) {
already_aligned = 0;
if (tnx > max_nx) max_nx = tnx;
}
tfx = src[i].final_xform_enable;
if (max_fx != tfx) {
already_aligned = 0;
max_fx |= tfx;
}
}
/* Pad the cps to equal xforms */
for (i = 0; i < nsrc; i++) {
flam3_copyx(&dst[i], &src[i], max_nx, max_fx);
}
/* Skip if this genome is compatibility mode */
if (dst[usethisone].interpolation_type == flam3_inttype_compat ||
dst[usethisone].interpolation_type == flam3_inttype_older)
return;
/* Check to see if there's a parametric variation present in one xform */
/* but not in an aligned xform. If this is the case, use the parameters */
/* from the xform with the variation as the defaults for the blank one. */
/* All genomes will have the same number of xforms at this point */
/* num = max_nx + max_fx */
for (i = 0; i<nsrc; i++) {
for (xf = 0; xf<max_nx+max_fx; xf++) {
/* Loop over the variations to see which of them are set to 0 */
/* Note that there are no parametric variations < 23 */
for (j = 23; j < flam3_nvariations; j++) {
if (dst[i].xform[xf].var[j]==0) {
if (i>0) {
/* Check to see if the prior genome's xform is populated */
if (dst[i-1].xform[xf].var[j] != 0) {
/* Copy the prior genome's parameters and continue */
flam3_copy_params(&(dst[i].xform[xf]), &(dst[i-1].xform[xf]), j);
continue;
}
} else if (i<nsrc-1) {
/* Check to see if the next genome's xform is populated */
if (dst[i+1].xform[xf].var[j] != 0) {
/* Copy the next genome's parameters and continue */
flam3_copy_params(&(dst[i].xform[xf]), &(dst[i+1].xform[xf]), j);
continue;
}
}
}
} /* variations */
if (dst[i].xform[xf].padding == 1 && !already_aligned) {
/* This is a new xform. Let's see if we can choose a better 'identity' xform. */
/* Check the neighbors to see if any of these variations are used: */
/* rings2, fan2, blob, perspective, julian, juliascope, ngon, curl, super_shape, split */
/* If so, we can use a better starting point for these */
/* Remove linear from the list */
dst[i].xform[xf].var[0] = 0.0;
/* Look through all of the 'companion' xforms to see if we get a match on any of these */
fnd=0;
/* Only do the next substitution for log interpolation */
if ( (i==0 && dst[i].interpolation_type == flam3_inttype_log)
|| (i>0 && dst[i-1].interpolation_type==flam3_inttype_log) ) {
for (ii=-1; ii<=1; ii+=2) {
/* Skip if out of bounds */
if (i+ii<0 || i+ii>=nsrc)
continue;
/* Skip if this is also padding */
if (dst[i+ii].xform[xf].padding==1)
continue;
/* Spherical / Ngon (trumps all others due to holes) */
/* Interpolate these against a 180 degree rotated identity */
/* with weight -1. */
/* Added JULIAN/JULIASCOPE to get rid of black wedges */
if (dst[i+ii].xform[xf].var[VAR_SPHERICAL]>0 ||
dst[i+ii].xform[xf].var[VAR_NGON]>0 ||
dst[i+ii].xform[xf].var[VAR_JULIAN]>0 ||
dst[i+ii].xform[xf].var[VAR_JULIASCOPE]>0 ||
dst[i+ii].xform[xf].var[VAR_POLAR]>0 ||
dst[i+ii].xform[xf].var[VAR_WEDGE_SPH]>0 ||
dst[i+ii].xform[xf].var[VAR_WEDGE_JULIA]>0) {
dst[i].xform[xf].var[VAR_LINEAR] = -1.0;
/* Set the coefs appropriately */
dst[i].xform[xf].c[0][0] = -1.0;
dst[i].xform[xf].c[0][1] = 0.0;
dst[i].xform[xf].c[1][0] = 0.0;
dst[i].xform[xf].c[1][1] = -1.0;
dst[i].xform[xf].c[2][0] = 0.0;
dst[i].xform[xf].c[2][1] = 0.0;
fnd=-1;
}
}
}
if (fnd==0) {
for (ii=-1; ii<=1; ii+=2) {
/* Skip if out of bounds */
if (i+ii<0 || i+ii>=nsrc)
continue;
/* Skip if also padding */
if (dst[i+ii].xform[xf].padding==1)
continue;
/* Rectangles */
if (dst[i+ii].xform[xf].var[VAR_RECTANGLES]>0) {
dst[i].xform[xf].var[VAR_RECTANGLES] = 1.0;
dst[i].xform[xf].rectangles_x = 0.0;
dst[i].xform[xf].rectangles_y = 0.0;
fnd++;
}
/* Rings 2 */
if (dst[i+ii].xform[xf].var[VAR_RINGS2]>0) {
dst[i].xform[xf].var[VAR_RINGS2] = 1.0;
dst[i].xform[xf].rings2_val = 0.0;
fnd++;
}
/* Fan 2 */
if (dst[i+ii].xform[xf].var[VAR_FAN2]>0) {
dst[i].xform[xf].var[VAR_FAN2] = 1.0;
dst[i].xform[xf].fan2_x = 0.0;
dst[i].xform[xf].fan2_y = 0.0;
fnd++;
}
/* Blob */
if (dst[i+ii].xform[xf].var[VAR_BLOB]>0) {
dst[i].xform[xf].var[VAR_BLOB] = 1.0;
dst[i].xform[xf].blob_low = 1.0;
dst[i].xform[xf].blob_high = 1.0;
dst[i].xform[xf].blob_waves = 1.0;
fnd++;
}
/* Perspective */
if (dst[i+ii].xform[xf].var[VAR_PERSPECTIVE]>0) {
dst[i].xform[xf].var[VAR_PERSPECTIVE] = 1.0;
dst[i].xform[xf].perspective_angle = 0.0;
/* Keep the perspective distance as-is */
fnd++;
}
/* Curl */
if (dst[i+ii].xform[xf].var[VAR_CURL]>0) {
dst[i].xform[xf].var[VAR_CURL] = 1.0;
dst[i].xform[xf].curl_c1 = 0.0;
dst[i].xform[xf].curl_c2 = 0.0;
fnd++;
}
/* Super-Shape */
if (dst[i+ii].xform[xf].var[VAR_SUPER_SHAPE]>0) {
dst[i].xform[xf].var[VAR_SUPER_SHAPE] = 1.0;
/* Keep supershape_m the same */
dst[i].xform[xf].super_shape_n1 = 2.0;
dst[i].xform[xf].super_shape_n2 = 2.0;
dst[i].xform[xf].super_shape_n3 = 2.0;
dst[i].xform[xf].super_shape_rnd = 0.0;
dst[i].xform[xf].super_shape_holes = 0.0;
fnd++;
}
}
}
/* If we didn't have any matches with those, */
/* try the affine ones, fan and rings */
if (fnd==0) {
for (ii=-1; ii<=1; ii+=2) {
/* Skip if out of bounds */
if (i+ii<0 || i+ii>=nsrc)
continue;
/* Skip if also a padding xform */
if (dst[i+ii].xform[xf].padding==1)
continue;
/* Fan */
if (dst[i+ii].xform[xf].var[VAR_FAN]>0) {
dst[i].xform[xf].var[VAR_FAN] = 1.0;
fnd++;
}
/* Rings */
if (dst[i+ii].xform[xf].var[VAR_RINGS]>0) {
dst[i].xform[xf].var[VAR_RINGS] = 1.0;
fnd++;
}
}
if (fnd>0) {
/* Set the coefs appropriately */
dst[i].xform[xf].c[0][0] = 0.0;
dst[i].xform[xf].c[0][1] = 1.0;
dst[i].xform[xf].c[1][0] = 1.0;
dst[i].xform[xf].c[1][1] = 0.0;
dst[i].xform[xf].c[2][0] = 0.0;
dst[i].xform[xf].c[2][1] = 0.0;
}
}
/* If we still have no matches, switch back to linear */
if (fnd==0)
dst[i].xform[xf].var[VAR_LINEAR] = 1.0;
else if (fnd>0) {
/* Otherwise, go through and normalize the weights. */
normed = 0.0;
for (j = 0; j < flam3_nvariations; j++)
normed += dst[i].xform[xf].var[j];
for (j = 0; j < flam3_nvariations; j++)
dst[i].xform[xf].var[j] /= normed;
}
}
} /* xforms */
} /* genomes */
}
|